Design of an inference engine for the semantic web

This document is the proposal for the Master Thesis made as a part of my Master Degree in Computer Science Education (Software Systems) at the Open University of the Netherlands . The work will be done in collaboration with the research department of the company Agfa in Mortsel Belgium.

Student data

Name Guido Naudts

Student number 831708907

Address Secretarisdreef 5

 2288 Bouwel

Telephone work 0030-2-542.76.01

 Home 0030-14-51.32.43

E-mail Naudts_Vannoten@yahoo.com
Introduction

What is the semantic web ? Very short : the semantic web is the automation of the internet .What does this mean ? On the internet an enormous amount of information is available mostly in HTML or other human readable formats . The semantic interpretation of the material can only be performed by a human being as it cannot be done by a computer . Consequently, the internet pages are only to a small degree accessible for computer manipulation (something can be done by interpreting e.g. the embedded links) .

Now if we want to make these pages available for processing by the computer we can do either of two things :

· we can let the computer analyse the contents of the pages . This brings us into the realm of artificial intelligence . For the purpose of this thesis this possibility can be eliminated .

· we can add information to the pages that is meant for usage by a computer . This information is called meta-information . Obviously standards are needed to make this information useful . So W3C devised the standard RDF . RDF stands for Resource Description Framework and W3C stands for World Wide Web Consortium , an organism charged with the task of devising standards for the internet . RDF creates the possibility to add declarative meta-information to the web pages . In this proposal I will explore this second possibility .

The standard representation of RDF is in XML format . I will not make use of this representation but , for convenience sake, I will use the RDF representation named N3 . This isyntax for RDF t is more easy to use and work with than the XML syntax .

Basically RDF is a set of triples : subject - verb - object . These are binary relations where the verb can be considered to be a predicate . This set of triples constitutes a directed graph with arrows going from subject to object; the arrows represent the verb .

With the mere use of RDF alone we can go a long way towards the automation of the internet . But our system, which at the moment only consists of the first two layers of fig. 1, will eventually have to be extended because some of the things we wish to be done by computers cannot yet be done with these two layers . One standard extension exists already : RDFS or RDF Schema . Here RDF is extended with notions like : class, property, constraint,... Another extension is in preparation (in the Webont working group of the W3C) where an ontology for RDF will be specified .

But we are not satisfied yet : on top of these four layers (see fig. 1) we want a logical layer so that we can define rules to be used by inference engines . Sometimes we want to prove something too e.g. rule 1 says : x is the author of y . Rule 2 (on another website) says : the author of y is director of w3c . Then we want to prove : x is director of w3c .

The logic layer and the proof layer will be the subject of our investigation .

[image: image1.png]Trust

Logics

Ontology Vocabulary

RDF + RDFSchema

AML + NameSpaces + XMLSchema

UNICODE + URI

Fig. 1 The different layers composing the semantic web .

Explanation of fig. 1 :

At the bottom we have the basic mechanisms to define and use information on the internet : unicode and URI = Universal Resource Locator .

At the second level we find the well known XML (Extensible Markup Language) with its namespaces and XMLSchema , the successor of DTD (= Document Type Definition) , a language for describing XML objects .

At the third level we find RDF (Resource Description Framework) [RDFMS] and RDFSchema (see text) [RDFSC] .

At the fourth level we find the definition of an ontology . Where RDF offers a syntax to describe a document , the ontology will offer the specific terms needed to describe it .

At the fifth level we find the logic layer . This layer will make it possible to generate rules and make queries based on these rules .

Finally, at the sixth level we find the definition of trust . In order for people and computers to trust each other we must establish a web of trust . This must be based on rules (logic) and cryptographic mechanisms . Besides trust we can find other applications at this level .

Research question :

The problem :

Regarding the semantic web experiments have been done with two programming systems that are inference engines : CWM (abbreviation for Closed World Machine) [SWAP/CWM] and Euler [DEROO] . These programs are based on the RDF and RDFS standards and on top of these are using logical enhancements and ontology features . However these program systems are experimental and were developed ad-hoc . Now, as Tim Berners-Lee points out [DESIGN] , the need for an inference engine that is adaptable, well specified and as minimal as possible has made itself felt .

A well defined engine can help a lot in guaranteeing consistency and procuring efficiency . Indeed it is difficult to reason about something which is not well specified .

So there really is a need to develop an inference engine (or family of engines) founded on a more formal basis . So the fundamental question arises :

What is the best way for realising an inference engine so that the requirements that are posed by the semantic web (and the internet) are met ? .

In my view the following requirements are posed by the internet :

· the data are distributed . A consequence of this is the difficulty to avoid inconsistencies .

· heterogeneity of goals and purposes must be taken into account .

· we have to deal with a relatively slow transmission medium .

· the scale of everything can vary from small to extensive .

My first idea was that the development of a WAM machine might bring about enough formalism to build an efficient inference engine . However as was pointed out at a meeting in Heerlen by prof.dr. Jeuring a WAM machine is too low level for efficiently reasoning on the characteristics of the deductive engine (meta-reasoning) . So the formalism can better be made on a higher level . I agree with this (though a WAM-machine might give considerable gains in the programmatic implementation) when dealing with the logical mechanisms involved, which seem to be more important than the programmatic issues .

There are however other arguments . First there is the argument of evolvability (a general requirment for software development : see [GHEZZI]) . The internet is not something static neither is the semantic web . So we must take into account the necessity of continuous development and changes to an inference engine deployed on the scale of the internet . There is the argument of variability . In a system with millions of users we might expect that not all user communities have the same needs and look for the same properties in an inference engine . This implies that the engine must be build in a modular way . This again leads to the development of a basic engine which is kept as small as possible . This basic engine is enhanced with a set of logic specifications comprising facts and rules . However there has to be a formal specification of the engine too . Such a specification can be made with a functional language .

In order to be able to reason logically about the inference engine a specification of it has to be made . One way of doing this is by using meta-logical frameworks . Hence our research question can be reformulated : can meta-logical frameworks be used to specify the inference engine of the semantic web ?
However other systems exist that could be used for the purpose of defining logical systems : ALF, GANDALF, lambda-prolog ...

Once a description on a meta-level has been made we might want to reconsider the two points mentioned above, namely : optimisation and checking of inconsistency . Different mechanisms might exist for optimising a proof process . One is especially worth mentioning : reordering (this can be done as well on the inter-clause level (reordering of the sequence of clauses) as on the intra-clause level (reordering of the premises)). Other principles might exist (e.g. failure should be detected as soon as possible) . So the question is : what optimisation techniques can be used ?

Consistency check is also important on the internet . To a certain degree it interferes with optimisation in this sense that inconsistencies should be detected as soon as possible . We can define inconsistencies by logical rules . However there is another possibility : if we define the inference engine by a metalogical specification, we can metalogically check the correctness of the proofs . Thus inconsistencies will be detected . The question is : how can we best avoid inconsistencies ?

As we speak about deduction we also speak about logic . When a system on internet scale is involved, some assumptions concerning logic can readily be made :

· no closed world : when we gather and merge files on the internet we cannot assume that the information will be complete .

· paraconsistent logics : when we encounter contradictions we would acquire strange results if we accept that from a contradiction everything can be deduced .

· should reasoning be monotonic ?

The question is : which system of logic should be followed on the internet ?

Another question is : what is the interpretation of the logic i.e. what are its semantics ?

Solution framework :

We propose the following framework as a guiding structure for arriving at an answer to the questions posed above :

[image: image2.png]Logic reasoning rules
(meta rules) N3

N3 axioms

N3 Query

v

Basic engine

Y

N3 Proof

Fig.2. Guiding framework for the thesis .

The basic engine is based on the Robinson resolution algorithm and consists basically of unification and backtracking . The engine is kept as simple as possible . Functions which are not considered to be basic will be defined in the meta-rules in N3-format . An example of this is the definition of a property as being a transitive property in RDFSchema . Possibly also optimisations and strategies for the engine can be defined here ?

What must be built in and what not ?

Should the meta-part be treated by the engine in the same way as the N3 axioms or not ?
The axioms represent input data and rules . They themselves and the query, as well as the proof, are also in N3-format .

Aim of the thesis

Our aim is to specify and test a basic inference engine in a functional language ; to investigate how the engine can be extended with meta-statements, especially meta-statements that are concerned with the efficiency of the deductive process and the consistency of the input data ; test the engine using test cases of the semantic web . An answer will be given to the questions asked above : although the anser cannot be complete , I will strive to highlight the most important aspects of the problem .

Eventually a working engine will be built in Python that can use the meta-rules in N3 syntax .

Planning

Specification of a parser and an inference engine in a functional language (presumably Haskell) : 300 hours .

Testing the use cases and building a set of meta-statements for the engine :

200 hours .

Study of the literature : 150 hours .

Writing the text of the thesis : 150 hours .

Coaching and graduation committee

Chairman: dr J. Jeuring professor at the Open University

Secretary : ir. F. Wester

Coach: ir. J. De Roo

Literature

[AIT] Hassan Aït-Kaci

 WAM A tutorial reconstruction .

 * could be more readable but still a good intro in Prolog engines .

[BENTHEM] Van Benthem e.a.

 Logica voor informatici

 Addison Wesley 1991.

* a very good introduction in logic . In Dutch .

[DESIGN] http://www.w3.org/DesignIssues/
 * Tim Berners-Lee’s site with his design-issues articles .

[DEROO] http://www.agfa.com/w3c/jdroo

 * the site of the Euler program

[GANDALF] http://www.cs.chalmers.se/~tammet/gandalf
 * Gandalf Home Page
[GHEZZI] Ghezzi e.a.

 Fundamentals of Software Engineering

 Prentice-Hall 1991 .

[HILOG] http://www.cs.sunysb.edu/~warren/xsbbook/node45.html

[LAMBDA] http://www.cse.psu.edu/~dale/lProlog/

 * lambda prolog home page

[MCGUINESS] Deborah McGuiness

 Explaining reasoning in description logics

 1966 Ph.D.Thesis

 * a very readable text

[OTTER] http://www.mcs.anl.gov/AR/otter/

 * Otter Home Page

[PFENNIG1] Pfennig F.

 Computation and deduction Draft April2 1997 .

 * difficult to read

[PFENNIG2] Pfennig F .

 Logic frameworks 1999

 * difficult to read

[RDFM] RDF Model Theory .Editor: Patrick Hayes

 <http://www.w3.org/TR/rdf-mt/>
 * readable, important .

[RDFMS] Resource Description Framework (RDF) Model and Syntax

 Specification

 <http://www.w3.org/TR/1999/REC-rdf-syntax-19990222>
[RDFSC] Resource Description Framework (RDF) Schema Specification

 1.0

 <http://www.w3.org/TR/2000/CR-rdf-schema-20000327>
[SWAP/CWM] http://www.w3.org/2000/10/swap

 http://infomesh.net/2001/cwm

 * CWM is another inference engine for the web .

[TBL01] Berners-Lee e.a.

 The semantic web

 Scientific American May 2001

 * the famous article in Scientific American

[TWELF] http://www.cs.cmu.edu/~twelf
 * Twelf Home Page

[UNCERT] Hin-Kwong Ng e.a.

 Modelling uncertainties in argumentation

 Department of Systems Engineering & Engineering

 Management
 The Chinese University of Hong Kong
 http://www.se.cuhk.edu.hk/~hkng/papers/uai98/uai98.html

 * some ideas about handling uncertainties

[WESTER] Wester e.a.

 Concepten van programmeertalen

 Open Universiteit Eerste druk 1994

 * Important for a thorough introduction in Gofer . In Dutch .

Abbreviations
ALF : Algebraic Logic Functional Programming Language

CWM : Closed World Machine

 An experimental inference engine for the semantic web

DTD : Document Type Definition , a language for defining XML-

 objects .

HTML : Hypertext Markup Language

RDF : Resource Description Framework

RDFS : RDF Schema

W3C : World Wide Web Consortium

WAM : Warren Abstract Machine

 Probably the first efficient implementation of prolog .

XML : Extensible Markup Language .

 The difference with HTML is that tags can be freely defined in

 XML .

PAGE
8

