The semantic web
By the advent of the internet a mass communication medium has become available. One of the most important and indeed revolutionary characteristics of the internet is the fact that now everybody is connected with everybody, citizens with citizens, companies with companies and citizens with companies, government etc... In fact now the global village exists. This interconnection creates astounding possibilities of which only few are used today. The internet serves mainly as a vehicle for hypertext. These texts with high semantic value for humans have little semantic value for computers.

The problem always with interconnection of companies is the specificity of the tasks to perform. EDI was an effort to define a framework that companies could use to communicate with each other. Other efforts have been done by standardizing XML-languages (eg. ebXML). At the current moment an effort endorsed by large companies is underway: web services.

The interconnection of all companies and citizens one with another creates the possibility of automating a lot of transactions that are now done manually or via specific and dedicated automated systems. It should be clear that separating the common denominator from all the efforts mentioned higher, standardizing it so that it can be reused a million times certainly has to be interesting. Of course standardisation may not develop into bureaucracy impeding further developments. But e.g. creating 20 times the same program with different programming languages does not seem very interesting either, except if you can leave the work to computers and even then, a good use should be made of computers.

If every time two companies connect to each other for some application they have to develop a framework for that application then the efforts to develop all possible applications become humongous. Instead a general system can be developed based on inference engines and ontologies. The mechanism is as follows: the interaction between the communicating partners to achieve a certain goal is laid down into rules using a common language to describe those rules where the flexibility is provided by the fact that the common language is in fact a series of languages and tools including in the semantic web vision: XML, RDF, RDFS, DAML+OIL, SweLL, owl(see further). Eventually a small addon has to be made for a certain application in the form a a set of additional ontological definitions. It is supposed that the inference engine has enough power to deal with all (practically all) possible situations.

Then their might be the following scheme for an application using the tecnolgy discussed and partially implemented within this thesis:

Lay down the rules of the application in Notation 3. One partner then sends a query to another partner. The inference engine interprets this query thereby using its set (sets) of ontological rules and then it produces an answer. The answer indeed might consist of statements that will be used by another soft to produce actions within the recieving computer. What has to be done then? Establishing the rules and making an interface that can transform the response of the engine into concrete actions.

The semantics of this all lies in the interpretation by the inference engine of the ontological rule sets that it disposes of and their specific implementation by the engine and in the actions performed by the interface as a consequence of the engine’s responses. Clearly the actions performed after a conclusion from the engine give place to a lot of possible standardisation. (A possible action might be: sending a SOAP message. Another might be: sending a mail).

What will push the semantic web are the enormous possibilities of automated interaction created by the sole existence of the internet between communication partners: companies, government, citizens. To say it simply: the whole thing is too interesting not to be done!!!

The question will inevitable be raised whether this development is for the good or the bad. The hope is that a further, perhaps gigantesque, development of the internet will keep and enhance its potentialities for defending and augmenting human freedom.

[Ushold]

Why does the semantic web need inference engines?

Mister Reader is interested in a book he has seen from a catologue on the internet from the company GoodBooks. He fills in the form for the command mentioning that he is entitled to become a reduction. Now GoodBooks need to do two things first: see to it that mr. Reader is who he claims to be and secondly verify if he is really entitled to a reduction by checking the rule-database where reductions are defined. The secret key of mr. Reader is certified by CertificatesA. CertificatesA is certified by CertificatesB. CertificatesB is a trusted party. Now certification is known to be an owl:transitiveProperty (for owl see further) so the inference engine of GoodBooks concludes that mr Reader is really mr Reader. Indeed a transitive property is defined by: if from a follows b and from b follows c then from a follows c. Thus if X is certified by A and A is certified by B then X is certified by B. Now the reduction of mr Reader needs to be checked. Nothing is found in the database, so a query is sent to the computer of mr Reader asking for the reason of his reduction. As an answer the computer of mr Reader sends back: I have a reduction because I am an employee of the company BuysALot. This “proof” has to be verified. A rule is found in the database stating that employees of BuysALot have indeed reductions. But is mr Reader an emplyee? A query is send to BuysALot asking whether mr Reader is an employee. The computer of BuysALot does not know the notion employee but finds that employee is daml:equivalentTo worker and that mr Reader is a worker in their company so they send back an affirmative answer to GoodBooks. GoodBooks again checks the secret key of BuysALot and now can conclude that mr Reader is entitled to a reduction. The book will be sent. Now messages go away to the shipping company where other engines start to work, the invoice goes to the bank of mr Reader whose bank account is obtained from his computer while he did not fill in anything in the form etc... Finally mr Reader recieves his book and the only thing he did do was to check two boxes.

The statements and rules that are necessary for this interaction are in Notation 3 in annexe

XML and namespaces

XML (Extensible Markup Language) is a subset of SGML (Standard General Markup Language). In its original signification a markup language is a language which is intended for adding information (“markup” information) to an existing document. This information must stay separate from the original hence the presence of separation characters. In SGML and XML “tags” are used. There are two kinds of tags: opening and closing tags.The opening tags are keywords enclosed between the signs “<” and “>”. An example: <author>. A closing tag is practically the same only the sign “/” is added e.g. </author>. With these elements alone quit interesting datastructures can be build (an example are the datastructures used in the modules Load.hs and N3Engine.hs from this thesis). An example of a book description:

<book>

 <title>

The semantic web

 </title>

 <author>

 Tim Berners-Lee

 </author>

</book>

As can be seen it is quite easy to build hierarchical datastructures with these elements alone. A tag can have content too: in the example the strings “The semantic web” and “Tim Berners-Lee” are content. One of the good characteristics of XML is its simpleness and the ease with which parsers and other tools can be build.

The keywords in the tags can have attributes too. The previous example could be written:

<book title=”The semantic web” author=”Tim Berners-Lee”></book>

where attributes are used instead of tags. This could seem to be simpler but in fact it is more complex as now not only tags have to be treated e.g. by a parser but also attributes. The choice whether tags are used or attributes is dependent on personal taste and the application that is implemented with XML. Rules might be possible; one rule is: avoid attributes as they complicate the structure and make the automatical interpretation less easy. A question is also: do attributes add any semantic information? It might be but it should then be made clear what the difference really is.

When there is no content or not any lower tags an abbreviation is possible:

<book title=”The semantic web” author=”Tim Berners-Lee”/>

where the closing tag is replaced by a single “/”.

An important characteristic of XML is the readability. OK it’s not like your favorite newsmagazine but for something which must be readable and handable for a computer it’s not that bad; it could have been hexadecimal code.

Though in the beginning XML was intended to be used as a vehicle of information on the internet it can be very well used in stand-alone applications too e.g. as the internal hierarchical tree-structure of a computer program . A huge advantage of using XML is the fact that it is standardized which means a lot of tools are available but which also means that a lot of people and programs can deal with it.

Very important is the hierarchical nature of XML. Expressing hierarchical data in XML is very easy and natural. This makes it a useful tool wherever hierarchical data are treated , including all applications using trees. XML could be a standard way to work with trees.

XML is not a language but a meta-language i.e. a language with as purpose to make other languages (“markup” languages).

Everybody can make his own language using XML. A person doing this only has to follow the syntaxis of XML i.e. produce wellformed XML. However (see further) more constraints can be added to an XML-language by using DTD’s and XML-schema, thus producing valid XML-documents. A valid XML-document is one that is in accord with the constraints of a DTD or XML-schema. To restate: an XML-language is a language that follows XML-syntax and XML-semantics. The XML-language can be defined using DTD’s or XML-schema.

If everybody creates his own language then the “tower-of-Babylon”-syndrom is looming. How is such a diversity in languages handled? This is done by using namespaces. A namespace is a reference to the definition of an XML-language.

Suppose someone has made an XML-language about birds. Then he could make the following namespace declaration in XML:

<birds:wing xmlns:birds=”http://birdSite.com/birds/”>

This statement is referring to the tag “wing” whose description is to be found on the site that is indicated by the namespace declaration xmlns (= XML Namespace). Now our hypothetical biologist might want to use an aspect of the fysiology of birds described however in another namespace:

<fysiology:temperature xmlns:fysiology=” http://fysiology.com/xml/”>

By the semantic definition of XML these two namespaces may be used within the same XML-object.

<?xml version=”1.0” ?>
<birds:wing xmlns:birds=”http://birdSite.com/birds/”>

large

</birds:wing>

<fysiology:temperature xmlns:fysiology=” http://fysiology.com/xml/”>

43

</fysiology:temperature>

The version statement refers to the used version of XML (always the same).

XML gives thus the possibiliy of using more than one language in one object. What can a computer do with this? It can check the well-formedness of the XML-object. Then is a DTD or an XML-schema describing a language is available it can check the validity of the use of this language within the XML object. It cannot interprete the meaning of this XML-object at least not without extra programming. Someone can write a program (e.g. a veterinary program) that makes an alarm bell sound when the temperature of a certain bird is 45 and research on the site “http://fysiology.com/ “ has indicated a temperature of 43 degrees Celsius.

Semantics of XML

The main “atoms” in XML are tags and attributes. Given the interpretation function for tags and attributes and a domain if t1 is a tag then I(t1) is supposed to be known. If a1 is an attribute then I(a1) is supposed to be known. If c1 is content then I(c) is supposed to be known. Given the structure:

x = <t1><t2>c</t2></t1>

I(x) could be : I(t1) and I(t2) and I(c). However here the hierarchical structure is lost. A possibility might be: I(x) = I(t1)[I(t2)[I(c)]] where the signs “[“ and “]” represent the hierarchical nature of the relationship.

It might be possible to reduce the semantics of XML to the semantics of RDF by declaring:

t1 :has :a1. t1 :has :c1. t1 :has t. where t1 is a tag, a1 is an attribute, c1 is content and t is an XML-tree. The meaning of :has is in the URI where :has refers to. Then the interpretation is the same as defined in the semantics of RDF.

The text above is about well-formed XML. DTD’s and XML-schema change the semantic context as they give more constraints that restrict the semantic interpretation of an XML-document. When an XML- document conforms to a DTD or XML-schema it is called a valid XML-document.

DTD and XML-Schema

These two subjects are not between the main subjects relevant for this thesis, but it are important tools that can play a role in the Semantic Web so I will discuss a small example. Take the following XML-object:

<?xml version=”1.0.1” ?>

<!DOCTYPE bird SYSTEM “http://www.bird.com/bird.dtd”>

<bird frequency = “2”>

 <wing>

 large

 </wing>

 <color>

 yellow

 </color>

</bird>

The DOCTYPE line indicates the location of the DTD that describes the XML-object. (Supposedly bird-watchers are indicating the frequency with which a bird has been seen, hence the attribute frequency).

And here is the corresponding DTD (the numbers are not part of the DTD but added for convenience of the discussion):

1) <!DOCTYPE bird

2) [<!ELEMENT bird (wing, color?, place+)>

3) <!ATTLIST bird frequency CDATA #REQUIRED>

4) <!ELEMENT wing PCDATA>

5) <!ELEMENT color PCDATA>

6) <!ELEMENT place PCDATA>

7)]>

Line 1 gives the name (which is the root element of the XML-object) of the DTD corresponding to the DOCTYPE declaration in the XML-object. In line 2 the ELEMENT (= tag) bird is declared with the indication that there are three elements lower in the hierarchy. The element wing may only occur once in the tree beneath bird; the element color may occur 0 or 1 times (indicated by the “?”) and the element place may occur one or more times (indicated by “+”). An * would indicate 0 or more times.

In line 3 the attributes of the element bird are defined. There is only one attribute “frequency”. It is declared of being of type CDATA (= alphanumerical) en #REQUIRED which means it is obligatory.

In lines 4, 5 and 6 the elements wing, color and place are declared as being of type PCDATA (= alphanumerical). The diference between CDATA and PCDATA is that PCDATA will be parsed by the parser (e.g. internal tags will be recognized) and CDATA will not be parsed.

DTD has as a huge advantage it ease of use. But there are a lot of disadvantages.

[http://pro.html.it/print_articolo.asp?id=175].

1) a DTD object is not in XML syntaxis. This creates extra complexity and also needless as it could have been easily defined in XML-syntaxis.

2) The content of tags is always #PCDATA = alphanumerical; the possibility to define and validate other types of data (like e.g. numbers) is not possible.

3) There is only one DTD-object; it is not possible to import other definitions.

To counter the critics on DTD W3C devised XML-Schema. XML-Schema offers a lot more possibilities for making definitions and restrictions as DTD but at the price of being a lot more complex. (Note: again the line numbers are added for convienence).[http://www.w3schools.com/schema/schema_schema.asp].

1) <xml version="1.0"?>

2) <xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema

3) xs:targetNameSpace="http://www.test/#bird">

4) <xs:element name=“bird“>

5) <xs:complexType>

6) <xs:sequence>

7) <xs:attribute name=”frequency” type=”xs:integer”/>

8) <xs :element name=“wing” type=”xs:string/ maxOccurs=1 minOccurs=1/>

9) <xs :element name=“color” type=”xs:string maxOccurs=1 minOccurs=0/>

10) <xs :element name=“place” type=”xs:string minOccurs=1/>

11) </xs :sequence>

 12) </xs:complexType>

13) </xs :element>

14) </xs :schema>

Line 1 : an XML-Schema is an XML-object. The root of an XML_Schema is always a schema tag. It can contain attributes, here the namespace where XML-Schema is defined and the location of this schema definition.

In the XML-object bird the statement:

<xs:schemaLocation=”http://www.test/bird.xsd”>

can indicate the location of the XML-Schema.

In line 2 the namespace of XML-Schema is defined (there you can find all the official documents).

Line 3 defines what the target namespace is i.e. to which namespace the elements of the XML-object bird belong that do not have a namespace prefix.

Line 4 defines the root element bird of the defined XML-object. (The root of the schema document is <xs:schema …>).

Line 5: bird is a complex element. Elements that have an element lower in the hierarchy or/and an attribute are complex elements. This is declared with xs:complexType.

Line 6: complex types can be a sequence, an alternative or a group.

Line 7: the definition of the attribute frequency. It is defined as an integer (this was not possible with a DTD).

Line 8: the defintion of the element “wing”. This element can only occur one time as defined by the attributes maxOccurs and minOccurs of the element xs:element.

Line 9: the element “color” can occur 0 or 1 times.

Line10: the element “place” can oocur 1 or more times.

Line 11, 12, 13, 14: closing tags.

Because the syntaxis of XML-Schema is XML it is possible to use elements of XML-Schema in RDF(see further) e.g. for defining integers.

Other internet tools

For completeness some other W3C tools are mentionned for their relevance in the Semantic Web (but not for this thesis):

1) XSL.[W3SCHOOLS]

 XSL consists of three parts:

a) XSLT (a language for transforming XML documents). Instead of the modules N3Parser en Load who transform Notation 3 to an XML-object, it is possible to transform Notation 3 to RDF (by one of the available programs), then apply XSLT for transforming the RDF-object into the desired XML-format.

b) XPath (a language for defining parts of an XML

 document).

c) XSL Formatting Objects (a vocabulary for formatting

 XML documents).

2) SOAP[W3SCHOOLS]:

A SOAP message is an XML-object consisting of a SOAP-header who is optional, a SOAP-envelope that defines the content of the message and a SOAP-body that contains the call and response data. The call-data have as a consequence the excution of a remote procedure by a server and the response data are sent from the server to the client. SOAP is an important part of Web Services.

3)WSDL[W3SCHOOLS] and UDDI: WSDL stand for: Web Services Description Language. A WSDL-description is an XML-object that describes a WebService. Another element of Web Services is UDDI (Universal Description, Discovery and Integration service). UDDI is the description of a service that should permit finding web-services on the internet. It is to be compared with Yellow and White Pages for telephony.
URI’s and URL’s

What is a URI? URI means Uniform Resource Indicator.

The following examples illustrate URI that are in common use.

[http://www.isi.edu/in-notes/rfc2396.txt].

 ftp://ftp.is.co.za/rfc/rfc1808.txt

 -- ftp scheme for File Transfer Protocol services

 gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles

 -- gopher scheme for Gopher and Gopher+ Protocol services

 http://www.math.uio.no/faq/compression-faq/part1.html

 -- http scheme for Hypertext Transfer Protocol services

 mailto:mduerst@ifi.unizh.ch

 -- mailto scheme for electronic mail addresses

 news:comp.infosystems.www.servers.unix

 -- news scheme for USENET news groups and articles

 telnet://melvyl.ucop.edu/

-- telnet scheme for interactive services via the TELNET Protocol

URL stands for Uniform Resource Locator. This is a subset of URI. An URL indicates the access to a resource. URN refers to a subset of URI and indicates names that must remain unique even when the resource ceases to be available. URN stands for Uniform Resource Name.

In this thesis only URL’s will be used and only http as protocol.

The general format of an http URL is:

http://<host>:<port>/<path>?<searchpart>.

The host is of course the computer that contains the resource; the default port number is normally 80; eventually e.g. for security reasons it might be changed to something else; the path indicates the directory access path. The searchpath serves to pass information to a server e.g. data destinated for CGI-scripts.

When an URL finishes with a slash like http://www.test.org/definitions/ the directory definitions is addressed. This will be the directory defined by adding the standard prefix path e.g. /home/netscape to the directory name: /home/netscape/definitions.The parser can then return e.g. the contents of the directory or a message “no access” or perhaps the contents of a file “index.html” in that directory.

A path might include the sign “#” indicating a named anchor in an html-document. Following is the html definition of a named anchor:

<H2>The semantic web</H2>
A named anchor thus indicates a location within a document. The named anchor can be called e.g. by:

http://www.test.org/definition/semantic.html#semantic

Resource Description Framework RDF

[RDF Primer]

RDF is a language. The semantics are defined by [RDF_SEMANTICS]; three syntaxes are known: XML-syntax, Notation 3 and N-triples. N-triples is a subset of Notation 3 and thus of RDF.

Very basically RDF consist of triples: subject - predicate - object. This simple statement however is not the whole story; nevertheless it is a good point to start.

An example from [www.albany.edu/~gilmr/metadata/rdf.ppt]:

a statement is:

“Jan Hanford created the J. S. Bach homepage.”. The J.S. Bach homepage is a resource. This resource has a URI: http://www.jsbach.org/. It has a property: creator with value = Jan Hanford. Figure ... gives a graphical view of this.

Creator>

</Description>

[image: image1.wmf]RDF Graph

http://www.

jsbach

.org

Jan Hanford

has the creator

Resource

Property Type

Property Value

In simplified RDF this becomes:

<RDF>

 <Description about= “http://www.jsbach.org”>

 <Creator>Jan Hanford</Creator>

 </Description>

</RDF>

However this is without namespaces meaning that the notions are not well defined. With namespaces added this becomes:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description about=”http://www.jsbach.org/”>

 <dc:Creator>Jan Hanford</dc:Creator>

 </rdf:Description>

</rdf:RDF>

xmlns stands for: XML Namespace. The first namespace refers to the document describing the (XML-)syntax of RDF; the second namespace refers to the description of the Dublin Core, a basic ontology about authors and publications. This is also an example of two languages that are mixed within an XML-object: the RDF and the Dublin Core language.

There is also an abbreviated rdf-syntax. The example above the becomes:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description about=”http://www.jsbach.org/” dc:Creator=”Jan Hanford”>

 </rdf:Description>

</rdf:RDF>

In the following example is shown that more than one predicate-value pair can be indicated for a resource.

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:bi=”http://www.birds.org/definitions/”>

 <rdf:Description about= “http://www.birds.org/birds#swallow”>

 <bi:wing>pointed</bi:wing>

 <bi:habitat>forest</bi:habitat>

 </rdf:Description>

</rdf:RDF>

or in abbreviated form:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:bi=”http://www.birds.org/definitions/”>

 <rdf:Description about=”http://www.birds.org/birds#swallow“ bi:wing=”pointed” bi:habitat=“forest”>
 </rdf:Description>

</rdf:RDF>

Other abbreviated forms exists but this is out of scope for this thesis.

The container model of RDF:
Three container types exist in RDF:

1) a bag: an unordered list of resources or literals. Duplicates are permitted.

2) a sequence: an ordered list of resources or literals. Duplicates are permitted.

3) An alternative: a list of resources or literals that represent alternative values for a predicate.

Here is an example of a bag. For a sequence use rdf:seq and for an alternative use rdf:alt.

<rdf:RDF>

 <rdf:Description about="http://www.birds.com/birds/colors/">

 <bi:colors>

 <rdf:Bag ID="bird_colors">

<rdf:li resource="http://www.birds.com/birds/colors#yellow"/>

<rdf:li resource="http://www.birds.com/birds/colors#red"/>

<rdf:li resource="http://www.birds.com/birds/colors#green"/>

 </rdf:Bag>

 </bi:colors>

 </rdf:Description>

</rdf:RDF>

Note that the “bag” statement has an id which makes it possible to refer to the bag.

<rdf:Description about="#bird_colors">

 <dc:Creator>Guido Naudts</dc:Creator>

</rdf:Description>

It is also possible to refer to all elements of the bag at the same time with the “aboutEach” attribute.

<rdf:Description aboutEach="#bird_colors">

 <bi:Description>See bird manual</bi:Creator>

</rdf:Description>

This says that a description of each color can be found in the manual.

Reification
Reification means describing a RDF statement by describing its separate elements. E.g. following example:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description about=”http://www.jsbach.org/” dc:Creator=”Jan Hanford”>

 </rdf:Description>

</rdf:RDF>

becomes:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description>

 <rdf:subject resource="http://www.jsbach.org/"/>

 <rdf:predicate resource="http://purl.org/DC/Creator" />

 <rdf:object>Jan Hanford</rdf:object>

 <rdf:type resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />

 </rdf:Description>

</rdf:RDF>

RDF data model

Sets in the model :

1) There is a set called Resources.

2) There is a set called Literals.

3) There is a subset of Resources called Properties.

4) There is a set called Statements, each element of which is a triple of the form

{pred, sub, obj}

where pred is a property (member of Properties), sub is a resource (member of Resources), and obj is either a resource or a literal (member of Literals).

RDF:type is a member of Properties.

RDF:Statement is a member of resources but not contained in Properties.

RDF:subject, RDF:predicate and RDF:object are in Properties.

Reification of a triple {pred, sub, obj} of Statements is an element r of Resources representing the reified triple and the elements s1, s2, s3, and s4 of Statements such that

s1: {RDF:predicate, r, pred}
s2: {RDF:subject, r, subj}
s3: {RDF:object, r, obj}
s4: {RDF:type, r, [RDF:Statement]}

s1 means that the predicate of the reified triple r is pred. The type of r is RDF:Statement.

RDF:Resource indicates a resource.

RDF:Property indicates a property. A property in rdf is a first class object and not an attribute of a class as in other models. A property is also a resource.

Conclusion:
What is RDF? It is a language with a simple semantics consisting of triples: subject – predicate – object and some other elements. Several syntaxes exist for RDF: XML, graph, Notation 3. Notwithstanding its simple structure a great deal of information can already be expressed with it. One of the strong points of RDF lies in its simplicity with as a consequence that reasoning engines can be constructed in a fairly simple way thanks to easy manipulation of data structures and simple unification algorithms.

RDF Schema

Withe RDF Schema comes the possibility to use constraints i.e. limiting the values that can be an element of defined sets. Say “rats” is a set and it is expressed that “rats” is a subclass of “mammals”. This is a restriction on the set “rats” as this set can now only contain elements that are “mammals” and thus have all properties of mammals.

Here follows an overview of the important concepts. The first-order descriptions are taken from:

[Champin] and put in SWeLL format.

The RDF Schema namespace is indicated with rdfs.

rdfs:subPropertyOf : A property is a relation between sets and consists of a set of tuples. A subproperty is a subset of this set.

Rule: {{ :s :p1 :o. :p1 rdfs:subPropertyOf :p2. } log:implies { :s :p2 :o}} a log:Truth; log:forAll :s,:p1,:o,:p2.

Since subPropertyOf defines a subset, transitivity holds:

rfds:subPropertyOf a owl:TransitiveProperty. with the definition of owl:TransitiveProperty:

{{:p a owl:TransitiveProperty. :a :p :b. :b :p :c.} log:implies {:a :p :c}} a log:Truth; log:forAll :a, :b, :c, :p.

Cycles are not permitted. Cycles have as a consequence that a subproperty is its own subproperty. This can be expressed as:

{:p rdfs:subPropertyOf :p} a log:FalseHood; log:forAll :p.

Also:

{{:p a rdfs:subPropertyOf} log:implies {:p a rdf:property}} a log:Truth; log:forAll :p.

rdfs:Class: a class defines semantically a set of URI’s. The set is defined by indicating one way or another which items are in the class.

rdfs:subClassOf:

The meaning of subClassOf is analogous to subpropertyOf:

{{ :s :p1 :o. :p1 rdfs:subClassOf :p2. } log:implies { :s :p2 :o}} a log:Truth; log:forAll :s,:p1,:o,:p2.

And of course:

rdfs:subClassOf a owl:TransistiveProperty.

Every class is a subclass of rdf:Resource:

{{:c a rdfs:Class.} log:implies {:c rdfs:subClassOf rdf:Resource}} a log:Truth;log:forAll :c.

rdf:Resource a rdfs:Class.

rdfs:domain and rdfs:range:

First:

rdfs:domain a rdf:property.

rdfs:range a rdf:property.

The domain(s) of a property defines which individuals can have the property i.e. the class(es) to which those individuals belong. A property can have more than one domain. The range of a property defines to which class the values of the property must belong. A property can have only one range:

{:p rdfs:range :r1. :p rdfs:range :r2. :r1 owl:differentIndividualFrom :r2} a log:FalseHood; log:forAll :p, :r1, :r2.

When at least one domain is defined the subject of a property must belong to some domain of the property. When a range is defined the object of a property must belong to the defined range of the property:

{{:s :p :o. :p rdfs:domain :d.} log:implies {:s rdf:type :d1. :p rdfs:domain :d1}} a log:Truth; log:forAll :s, :p, :o; log:forSome :d, :d1.

This rule can not be handled by the engine proposed in this thesis as it has a multiple consequent. However the rule can be put as follows:

{{:s :p :o. :p rdfs:domain :d. :s rdf:type :d1} log:implies { :p rdfs:domain :d1}} a log:Truth; log:forAll :s, :p, :o; log:forSome :d, :d1.

The rule for the range is simpler:

{{:s :p :o. :p rdfs:range :d.} log:implies {:o rdf:type :d}} a log:Truth; log:forAll :s, :p, :o, :d.

rdfs:Literal denotes the set of literals.

rdfs:Literal a rdfs:Class.

rdfs:Container: has three subclasses: rdf:Bag, rdf:Seq, rdf:Alt.

rdf:Bag rdfs:subClassOf rdfs:Container.

rdf:Seq rdfs:subClassOf rdfs:Container.

rdf:Alt rdfs:subClassOf rdfs:Container.

Members of a container are modlled by:

rdf:_1, rdf:_2, etc...

These are properties (rdf:_1 a rdf:Property.) and are instance of rdfs:ContainerMembershipProperty so:

rdf:_1 a rdfs:ContainerMembershipProperty.

rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property.

rdfs:ConstraintResource and rdfs:ConstraintProperty:

Some definitions:

rdfs:ConstraintResource rdfs:subClassOf rdf:Resource.

rdfs:ConstraintProperty rdfs:subClassOf rdf:Property.

rdfs:ConstraintProperty rdfs:subClassOf rdfs:ConstraintResource.

rdfs:range a rdfs:ConstraintProperty.

rdfs:domain a rdfs:ConstraintProperty.

The use of these two classes is not very clear.

rdfs:seeAlso and rdfs:isDefinedBy:

rdfs:seeAlso points to alternative descriptions of the subejct resource e.g.

:birds rdfs:seeAlso <http://www.americanBirds.com/>.

rdfs:isDefinedBy is a subproperty of rdfs:seeAlso and points to an original or authoritative description.

rdfs:seeAlso a rdf:Property.

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso.

rdfs:label and rdfs:comment:

The purpose of rdfs:label is to give a “name” to a resource e.g.

rdf:Property rdfs:label “An rdf property.”

rdfs:comment serves for somewhat longer texts.

Ontology Web Language (OWL)

Here is a list of ontology elements that are part of OWL:

rdf:type, rdf:Property, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, owl:Class, owl:sameClassAs, owl:DisjointWith, owl:oneOf, owl:unionOf, owl:intersectionOf, owl:complementOf, owl:samePropertyAs, owl:inverseOf, owl:DatatypeProperty, owl:ObjectProperty, owl:SymmetricProperty, owl:UniqueProperty, owl:UnambiguousProperty, owl:TransitiveProperty, owl:Restriction, owl:onProperty, owl:toClass, owl:hasClass, owl:hasValue, owl:minCardinality, owl:maxCardinality, owl:cardinality, owl:sameIndividualAs, owl:differentIndividualFrom, owl:List, owl:first, owl:rest, owl:nil.

The rdf and rdfs elements have already been discussed.

There are two main parts to OWL:

· the definition of datatypes based on XML Schema. Datatypes are elements of owl:Datatype.

· The object domain: the description of object classes into classes. Classes are elements of owl:Class. This gives the first statement:

 owl:Class rdfs:subClassOf rdfs:Class.

Two class names are already predefined, namely the classes owl:Thing and owl:Nothing. Every object is a member of owl:Thing, and no object is a member owl:Nothing. Consequently, every class is a subclass of owl:Thing and owl:Nothing is a subclass of every class.

This gives two rules :

{{:p a owl:Class} log:implies {:p rdfs:subClassOf owl:Thing}} a log:Truth; log:forAll :p.

{{:p a owl:Class} log:implies {owl:Nothing rdfs:subClassOf :p}} a log:Truth; log:forAll :p.

OWL Lite is a subset of OWL. The following discussion will mostly be about OWL Lite.

OWL Lite Equality and Inequality

owl:sameClassAs: expresses equality between classes e.g. :mammals owl:sameClassAs :mammalia.

owl:sameClassAs rdfs:subPropertyOf rdfs:subClassOf.

{{:c1 owl:sameClassAs :c2. :i1 a :c1.} log:implies {:i1 a :c2}} a log:Truth; log:forAll :c1, :c2, :i1.

owl:samePropertyAs: expresses the equality of two properties e.g. bi:tall owl:samePropertyAs ma:huge. when two ontologies use a different term with the same semantics.

{{:p1 owl:samePropertyAs :p2. :s :p1 :o.} log:implies { :s :p2 :o}} a log:Truth; log:forAll :p1, :p2, :s, :o.

owl:sameIndividualAs: expresses the equality of two individuals e.g. ma:lion1 owl:sameIndividualAs zo:leeuw_zoo.

Two rules are the consequence of this property:

{{:s1:p :o. :s2 owl:sameIndividualAs :s1} log:implies {:s2 :p :o1}} a log:Truth; log:forAll :o, :p, :s1, :s2.

{{:s :p :o1. :o2 owl:sameIndividualAs :o1} log:implies {:s :p :o1}} a log:Truth; log:forAll :s, :p, :o1, :o2.

owl:differentIndividualFrom: states that two individuals are not equal e.g. :mammals owl:differentIndividualFrom :fishes. How to put this in a rule?

Or said otherwise: if the engine knows :a owl:differentIndividualFrom :b, what can it deduce? When the statement :a sameIndividualAs :b also exist then there is of course a contradiction. This could be used as a fact matching with a goal produced by a rule.

OWL Lite property characteristics:

owl:inverseOf: one property is the inverse of another property e.g. hasChild is the inverse of hasParent. {:a :hasChild :b} log:implies {:b :hasParent :a}.

{{:p1 owl:inversOf :p2. :s :p1 :o.} log:implies {:o :p2 :s}} a log:Truth; log:forAll :p1, :p2, :s, :o.

owl:TransitiveProperty: properties can be transitive e.g. smaller than ...

Rule:

{{:p a owl:TransitiveProperty. :a :p :b. :b :p :c.} log:implies {:a :p :c}} a log:Truth; log:forAll :a, :b, :c, :p.

Example of a transitive property:

rdfs:subClassOf a owl:TransitiveProperty.

owl:SymmetricProperty: properties can be symmetric e.g.{ :a :friend :b } log:implies {:b :friend :a}.

{{:p a owl:SymmetricProperty. :a :p :b. } log:implies {:b :p :a}} a log:Truth; log:forAll :a, :b, :p.

owl:FunctionalProperty: this is a property that has 0 or 1 values e.g. :animal1 :hasFather :animal2. (Not all animals do have a father but if they do there is only one.)

{{:p a owl:FunctionalProperty. :s :p :o1. :s :p :o2. } log:implies{:o1 owl:sameIndividualAs :o2}} a log:Truth; log:forAll :p, :s, :o1, :o2.

owl:InverseFunctionalProperty: also called an unambigous property. :animal1 :isFatherOf :animal2.

{{:p a owl:FunctionalProperty. :s1 :p :o. :s2 :p :o. } log:implies{:s1 owl:sameIndividualAs :s2}} a log:Truth; log:forAll :p, :s1, :s2, :o.

Property restrictions:

allValuesFrom: this is a restriction on the values of the object that go with a duo (subject, property). The interpretation followed here is: when a subject s belonging to a certain class S has the property p with restriction to class O then the relation: s p o must be valid where o is an instance of O. Here is an example in RDF from [http://www.daml.org/2002/06/webont/owl-ex]:

<owl:Class rdf:ID="Person">

 <rdfs:subClassOf rdf:resource="#Animal"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent"/>

 <owl:allValuesFrom rdf:resource="#Person"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction owl:cardinality="1">

 <owl:onProperty rdf:resource="#hasFather"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#shoesize"/>

 <owl:minCardinality>1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>
This means that : a person is an animal ; if a person has a parent then he is a person; a person has only one father; his shoesize is minimally 1.

It is interesting to put this in N3.

{<#Person> rdfs:subClassOf <#Animal>;

 rdfs:subClassOf

 {owl:Restriction owl:onProperty <#hasParent>;

 owl:allValuesFrom <#Person>};

 rdfs:subClassOf

 {owl:Restriction owl:cardinality "1";

 owl:onProperty <#hasFather>};

 rdfs:subClassOf

 {owl:Restriction owl:onProperty <#shoeSize>;

 owl:minCardinality "1"}}.

Three intertwined triples are necessary for using the notion “allValuesFrom”.

A rule:

{{:c a {owl:Restriction owl:onProperty :p1; owl:allValuesFrom :o1. :s1 owl:Class :c}. :s1 :p1 :o2 } log:implies {:o2 a :o1}} a log:Truth; log:forAll :s1, :p1, :o1, :o2, :c.

Add the facts:

:a <#hasParent> :b.

:a owl:Class :c.

:c a {owl:Restriction owl:onProperty <#hasParent>; owl:allValuesFrom <#Person>}.

and put the query:

_:who a <#Person>.

with the answer:

:b a <#Person>.

someValuesFrom: this is a restriction on the values of the object that go with a duo (subject, property). The interpretation followed here is: when a subject s belonging to a certain class S has the property p with restriction to class O then the relation: s p o must be valid where o is an instance of O at least for one instance o. Contrary to allValuesFrom only some values (at least one) of the class do need to belong to the restriction.Here is an example in RDF:

<owl:Class rdf:ID="#Person">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasClothes"/>

 <owl:someValuesFrom rdf:resource="#Trousers"/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

This means that : “Person” is a class with property “hasClothes” and at least one value of “hasClothes” is “trousers”.

It is interesting to put this in N3.

{<#Person> rdfs:subClassOf

 {owl:Restriction owl:onProperty <#hasClothes>;

 owl:somelValuesFrom <#Trousers>}.

Three intertwined triples are again necessary for using the notion “someValuesFrom”.

A rule:

{{:c a {owl:Restriction owl:onProperty :p1; owl:someValuesFrom :o1}. :s1 owl:Class :c.:s1 :p1 :o2 } log:implies {:o2 a :o1}} a log:Truth; log:forAll :s1, :p1, :o1; log:forSome :o2.

The only difference here in the rule compared with the rule for allValuesFrom is in “log:forSome :o2”.

Add the facts:

:a <#hasClothes> :b.

:a owl:Class :c.

:c a {owl:Restriction owl:onProperty <#hasClothes>; owl:someValuesFrom <#Trousers>}.

and put the query:

_:who a <#Trousers>.

Here the rule means: if there is a triple {:a <#hasClothes> :b} with :a belonging to class :c, there should be at least one triple {:a <#hasClothes :t} where :t is a “Trousers”. The above query then does not make much sense; the someValuesFrom is a restriction on the content of a database and should be enforced before queries are made (see further).

 OWL Lite restricted cardinality:

minCardinality: this is stated on a property with respect to a particular class. In OWL Lite only 0 and 1 are permitted as values. In the full version there are no limitations on cardinality. If the the property habitat has minCardinality 1 for the class Animal, this means that each animal should have at least one habitat (which seems reasonable).

<owl:Class rdf:ID="Animal">

 <rdfs:subClassOf>

 <owl:Restriction owl:minCardinality="1">

 <owl:onProperty rdf:resource="#habitat"/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

<#Animal> rdfs:subClassOf { owl:Restriction owl:minCardinality “1”; owl:onProperty <#habitat>}.

A first trial for a rule:

{{:s1 owl:Class :c. :c a {owl:Restriction owl:minCardinality :n; owl:onProperty

:p.}. :n :greater “0”. } log:implies { :s1 :p :o.}} a log:Truth; log:forAll :s1, :c, :n, :p; log:forSome :o.

This rule however only states that at least one value of the property exist while, if minCardinality e.g. is 3, 3 values should exist. It seems necessary to describe actions or orders e.g. an order saying count the occurences of the values for that property and check if the minCardinality value is satisfied. This could be something like:

:c :cardinality {:a :p :o} ; log:forSome :o.

:c :greater :min. where :min is the minimum cardinality of the investigated property giving the rule:

{{:s1 owl:Class :c. :c a {owl:Restriction owl:minCardinality :n; owl:onProperty

:p.} :n1 :cardinality {:s1 :p :o}. } log:implies { :n1 :greater :n.}} a log:Truth; log:forAll :s1, :c, :n, :p, :n1, :o. where :cardinality and :greater have to be interpreted by the engine.

 This means that some ontology proper of the engine is necessary and that this ontology must be interpreted by the engine. In fact to impose an ontology a metalanguage is needed i.e. a language which speaks about the language so that properties like cardinality etc... can be checked. This metalanguage can have a RDF-syntaxis but it seems that semantically some extensions are necessary e.g. like for counting cardinalities.

The meta-rules and facts for the engine have to be divide into 2 sets:

1) rules to be applied during the preparatory phase where restrictions are tested and inconsistencies detected; where types are assigned.

2) rules for use during the inference of an answer to a query.

To impose restrictions the engine must detect inconsistencies which can be done by a query:

_:what :inconsistentWith _:ontologyItem.

This query would then return the list of all inconsistencies (= all possible solutions to the query)).

This is illustrated by the following rule form [OWL Rules]):

{{:s a [a owl:Restriction; owl:onProperty :p; owl:minCardinality :min]. {:s :p :o} math:proofCount :n. :n math:lessThan :min} log:implies {:s :inconsistentWith owl:Restriction}} a log:Truth; log:forAll :s, :p, :min, :o, :n.

Some explanations are in order. math:proofCount would give the number of possible triples that {:s :p :o} that satisfy the current substitutions for these variables (there normally are substitutions for :s and :p based on the owl:Restriction; for :o anything can be substituted.) This number can be found by posing a query: {subst(:s) subst(:p) :o} where subst(:s) means the current substitution for :s.

This has an important consequence for the engine: it must be able to make subqueries and using the results of a subquery within an ongoing query. Thus the engine must be recusively callable.

The rules should take into account the different formats possible for stating restrictions with RDF. Implementing completely OWL Lite in this way is out of scope for this thesis and seems to be more the subject for a Ph.D. Implementing OWL Lite without a set of meta-rules; just by interpreting the N3 input and detecting all restrictions and applying them is not so difficult. The main disadvantage however is that the result would be an engine that is very difficult to adapt to changes in the restrictions or for working with different sets of restrictions.

maxCardinality: for maxCardinality there is no restriction on the values in OWL Lite. The meaning is supposed to be clear.

cardinality: a certain value n for the cardinality of a property means that that property has the same value n for minCardinality and for maxCardinality.

OWL Lite datatypes :

There are in OWL two types of property : DatatypeProperty and ObjectProperty. An ObjectProperty relates an object to an object while a DatatypeProperty relates an object to a datatype value. The value of a datatype can be indicated with XML Schema.

An example of ObjectProperty:

owl:objectProperty <#wingColor>; rdfs:domain <#bird>; rdfs:range <#color>.

An example of DatatypeProperty:

owl:DatatypeProperty <#wingSize>; rdfs:comment

“wingsize is a DatatypeProperty whose range is xsd:decimal”;

rdfs:range <http://www.w3.org/2000/10/XMLSchema#decimal>.

OWL List primitives

The list primitives for owl are:

owl:List, owl:first, owl:rest, owl:nil.

Thise xamples creates the list (1,2,3):

:list a owl:List.

:list owl:first “1”; owl:rest [owl:first “2”; owl:rest [owl:first “3”; owl:rest owl:nil]].

Elements of full owl:

oneOf: or enumerated classes : a class is described by an enumeration.

Example: :owl_family owl:oneOf :barn_owl, :typical_owls.

Elements of sets: unionOf, complementOf, intersectionOf, disjointWith:

I will give only rules for two classes. For a list of classes more list primitives are necessary.

unionOf: the union of classes. Example:

:vertebrae owl:unionOf :pisces, :amphibia, :reptilia, :aves, :mammalia.

{{:c1 a owl:Class. :c2 a owl:Class. :c3 owl:unionOf :c1, :c2. :e a :c1.} log:implies {:e a :c3}} a log:Truth; log:forAll :c1, :c2, :c3.

complementOf: the class(es) that is (are) complementary to another class.

Example: :negative_numbers owl:complementOf :positive_numbers.

Understood had to be that there is a common superclass composed of the complementary classes:

:number owl:unionOf :negative_numbers, positive_numbers.

{{:c1 a owl:Class. :c2 a owl:Class. :e a :c1. :c1 owl:complementOf :c2.} log:implies {:e a :c2}} a log:FalseHood; log:forAll :c1, :c2, :e.

intersectionOf: a class is the intersection of two other classes.

Example: :fish-eaters rdfs:subClassOf :birds. :predators rdfs:subClassOf :birds. :marine_predators owl:intersectionOf :fish_eaters, :predators.

{{:c1 a owl:Class. :c2 a owl:Class. :c owl:intersectionOf :c1, :c2. :e a :c1. :e a :c2.} log:implies {:e a :c}} a log:Truth; log:forAll :c1, :c2, :c, :e.

owl:disjointWith: this expresses that two classes (which are sets) are mutually disjoint. An example:

:Birds rdfs :subClassOf owl :Class.

:Mammals rdfs:subClassOf owl:Class.

:Birds owl:disjointWith :Mammals

{{:c1 a owl:Class. :c2 a owl:Class. :i1 a :c1. :i2 a :c2. :c1 owl:disjointWith :c2.} log:implies {:i1 owl:differentIndividualFrom :i2}} a log:Truth; log:forAll :c1, :c2, :i1, :i2.

Annexe test case

Query of the pc of mr Reader called ReaderPC:

gb is the prefix for GoodBooks; dc is DublinCore; rd is ReaderPC.

this log:forAll ?x, ?y, ?z.

{gb:command gb:name ?x.

 ?x dc:id rd:mrReader.

?x dc:title “Wow_what_a_good_book”.

?x gb:reduction ?z.

?x gb:secret_key “2E7AA89BC43”.

?x gb:price ?y.}.

</rdf:Description>

U</rdf:RDF>

</rdf:Description>

</rdf:RDF>

1
26

_1091531685.ppt

RDF Graph

has the creator

Resource

Property Type

Property Value

http://www.jsbach.org

Jan Hanford

