The implementation of ontological restraints by use of a typed resolution engine

In RDFS a basic ontology is introduced as an extension to RDF. Further work on ontology is done by the WebOnt working group of the W3C [WEBONT]. Such an ontology imposes a classification as well as restrictions on RDF-data. In the following a general scheme for implementing such ontologies in a resolution engine as well as a specific scheme for the inference engine N3Engine based on N3 are discussed.

A resolution engine generally consists of a database of clauses on the one hand and a query on the other hand where solutions are found by resolution. The resolution is done by the unification of terms and the sustitution of variables.

The implementation of an ontology can be done by attaching types to the atoms of the database e.g. in a Prolog-like way:

SubClassOf(Vertebrae, Mammalia).

SubClassOf(Mammalia, Rodentia).

TransitiveProperty(SubClassOf).

Because we define SubClassOf to be a transitive property the query SubClassOf(Vertebrae,Rodentia) should be positive.But how do we define TransitiveProperty in Prolog?

In N3 this is defined by:

{:p a :TransitiveProperty. :a :p :b. :b :p :c.} log:implies { :a :p :c.}; log:forAll :a, :b, :c, :p.

This cannot be done in Prolog as quantification over a property is not possible. The engine N3Engine can work with such a definition. If the following axiom is given:

{{:p a owl:TransitiveProperty. :c1 :p :c2. :c2 :p :c3} log:implies {:c1 :p :c3}} a log:Truth;log:forAll :c1, :c2, :c3, :p.

rdfs:subClassOf a owl:TransitiveProperty.

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

and the following query is done:

?:who rdfs:subClassOf :vertebrae
the answer will be:

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :vertebrae.

Note: “a” is translated to rdf:type.

Note: relevant namespaces:

The site where the experimental logics for the semantic web are defined :

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

The site for the ontology defined by the WebOnt working group :

@prefix owl: <http://www.w3.org/2002/07/owl#> .

The XML Schema definitions:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

The rdf Schema definitions:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

The rdf syntax definition:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

However this method is not practical: the triples :c1 :p :c2. :c2 :p :c3. :c1 :p :c3. can be unified with all other triples as :c1, :c2, :c3 and :p are all variables. This then will provoke a combinatorial explosion. A possible solution is to let the engine produce a rule:

{:a rdfs:subClassOf :b. :b rdfs:subClassOf :c.} log:implies {:a rdfs:subClassOf :c}; log:forAll :a, :b, :c.

Here the triples will only be unified with other triples who have the predicate rdfs:subClassOf thereby countering the combinatorial explosion. The rule for transitive property must be dropped from the database.

Another solution is typing. All atoms in the database are given a type and implicitly all terms possess a (composed) type. When unification takes place only terms of the same type can be unified. How is this done in the previous example?

All atoms belong automatically to a superclass e.g. called :resource. Thus :vertebrae will be of the type :resource. :mammalia will have the type :vertebrae. :rodentia will have the type :mammalia. However clearly it must be possible to unify :rodentia with a variable of type :vertebrae. So the unification engine must take into account the class hierarchies. So the need is for: typing rules and rules for typed unification.

This gives the following model for implementation in N3Engine taking into account the triple structure (subject - predicate(or verb) – object) where subject, predicate or verb are either URI’s or variables. Variables represent URI’s. Subject, predicate and object are commonly named atoms. To implement the typing structure every atom is tagged with type information that permits to define the type and the unification of types. The tagging is to be taken literally as the data-structure inside N3Engine is an XML-structure. The typing and unification rules are described in a N3-file. The engine determines the types and matching following the rules layed down in this N3-file. The execution of those rules is done by formulating a query that is executed by the engine itself. Suppose there are two atoms t1 and t2 each with their type information , let’s say type1 and type2. So the engine might issue a query: :type1 :unification :type2 against the axiom-file typing_rules.n3. If the answer to that query is positive then the two types match, if not the two types do not match.

As an example the following rules might be in the file typing_rules.n3:

This rule defines a transitive property

The variable p will recieve the type

owl:TransitiveProperty; the others will recieve the type :resource

{{:p a owl:TransitiveProperty. :a :p :b. :b :p :c.} log:implies {:a :p :c}} a log:Truth; log:forAll :a, :b, :c, :p.

rule for atoms with type resource

probably best to built into the engine???

:a and :b recieve type resource

{{:a a :resource. :b a :resource.} log:implies {:a :unification :b}} a log:Truth; log:forAll :a, :b.

rule for subClassOf

all predicates subClassOf will recieve the type

owl:TransitiveProperty

rdfs:subClassOf :type owl:TransitiveProperty.

user class definitions

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

The last two rules are added (perhaps temporarily) from the user-input.

Then the following query might be issued:

:rodentia rdfs:subClassOf :vertebrae.

If the query is: ?:x rdfs:subClassOf :vertebrae. then ?:x will have the type class. Thus ?:x will only unify with URI’s of type class.

This will provoke a unification with :a :p :c. of the owl:TransitiveProperty rule. As :p is a owl:TransitiveProperty the query :rdfs:subClassOf :type owl:TransitiveProperty will be launched and (of course) be answered positively. This query will only be launched once as the type owl:TransitiveProperty will be added to the possible type of rdfs:subClassOf. It follows that the engine must dispose of a list of atoms with their types and restrictions. The resolution database is built with pointers to the list of atoms. This enhances the efficiency of the engine as now no longer enormous masses of alphanumerical data to have to be manipulated in stacks. Other queries e.g. :bird :has :feathers will not be matched with this rule because :has does not have the owl:transitiveProperty. In this way the combinatorial explosion is stopped.

Other ontological restrictions can be handled in the same way.

rdfs:property and rdfs:subPropertyOf can be treated in the same way.

statements about rdfs:propertyOf

this shows that an atom can have more than one type.

rdfs:subPropertyOf :type owl:transitiveProperty.

rdfs:subPropertyOf :type rdfs:property .

rule for subPropertyOf

{{:a rdfs:subPropertyOf :b. :b rdfs:propertyOf :c.} log:implies {:a rdfs:PropertyOf :c}} a log:Truth; log:forAll :a, :b,:c.

user statements

:bird_color rdfs:property :bird.

:wing_color rdfs:subPropertyOf :bird_color.

Query: :wing_color rdfs:property :bird.

Here types are not necessary for the unification.

Of course subProperty and property will only unify with subProperty or property.

rdfs:range and rdfs:domain impose restrictions on a property in the sense that things having the property must be of the class indicated by rdfs:range and the values of the property must be of the class rdfs:domain.

:wingSize a rdfs:property.

:wingSize rdfs:range :length.

:wingSize rdfs:domain :bird.

When the query:

:aquila :wingSize :1.

Is launched the engine will find in its atom-table that wingSize is a rdfs:property with restrictions domain = bird and range = length.

It therefore will launch the queries:

:aquila a :bird.

:1 a :length.

and probably get a positive result (but not if the user did not define :aquila to be a bird.)

There are two ways properties and restraints are put in the atom-list:

1) during a preparatory fase the user-input is scanned and types and restraints are determined following the rules in the file preparatory_types.n3.

2) if, during execution, the type of an atom is determined or a restraint is inherited (as a consequence of type determination) these are added to a temporary atom-list that contains the atoms for the blocks in the goal list; this temporary atom-list must be saved on the stack for backtracking purposes. The typing and restriction info for atoms in the database does not change anymore after the preparatory phase.

3) The same principle is valid for variables.

Here are some more examples taken from owl:

[see http://www.agfa.com/w3c/euler/owl-rules]

owl:inverseOf is defined as owl:inverseOf a rdf:property. It defines the ‘inversability’ of two predicates. This gives the following rule:

{{:p a owl:inverseOf. :q a owl:inverseOf. :p owl:inverseOf :q. :s :p :o.} log:implies {:o :q :s.}} a log:Truth; log:forAll :p, :q,:s, :o.

Here :p and :q will recieve the type owl:inverseOf so :o :q :s. will only match with properties that have the type owl:inverseOf.

This mechanism works also for following owl-items:

owl:samePropertyAs

owl:sameClassAs

owl:equivalentTo

An additional remark is necessary concerning owl:equivalentTo. Indeed instead of working with types for handling equivalences it seems better to eliminate them in a preparatory phase; if it is known that two atoms are equivalent one of the two can be supresses and replaced with the other and the equivalence statement can be deleted. This can also be done if equivalences are concluded during resolution execution.

Conclusion:

1) The use of typing is an important technique in the prevention of combinatorial explosions, certainly when general clauses are used that unify with all other clauses (like the general rules produced by WebOnt).

2) The use of typing also is a means to control correct usage; if a property is used with a certain domain and range the types of subject and object will be controlled and, if not good, no unification will take place.

So typing will enforce the correct usage of properties like class, subClassOf, subPropertyOf etc...

PAGE
4

