 Adaptation of a proof engine for the semantic web based on backchaining via Robinson resolution with cycle detection via Euler paths

===

In a recent article in Scientific American Tim Berners-Lee, James Handler and Ora Lassila [TBL01] describe a to some extent hypothetical semantic web . The idea is to put metadata about the data on the web consisting of facts and rules ; then inference and proof engines can deduce new facts from the existing metadata .

For some things on the internet metadata might be necessary at the moment ; this is especially the case when we speek about proof mechanisms . What do we need proof mechanisms for on the internet ?

 We can first see proof in a wide sense :logical proof . The simplest proof then is the modus ponens : (a->b)&a (b

But with logic we can proof other things too (if the rules we need for the proof are present) :

We need to prove properties of documents and persons :

 * authentication and authorization of persons

 * is a paper really what it claims to be e.g. a paper from the W3C . Anybody can at the moment make whatever claims he likes about anything .

So to make those proofs we need metadata : about persons and documents .

Cryptographic mechanisms should be involved . If we want to build a really secure internet then we need metadata : about persons, authentication, authorization, file-access, …

But other things need to be proved : a travel agent claims it has found reservation for your trip : hotel, airplane , ... Can they prove it ? Can you prove it (or check it)?

We can make a statement : there exists a site with travel arrangements for Bresil and a price lower than xxx dollar . The proof engine can try to proof whether this statement is true or false .

When the metadata reaches a critical mass we can make all kind of 'proofs' i.e. we can pose all kinds of queries :

is there an article from Berners-Lee on proofs for the semantic web ? ; etc ...

Now how do we make these proofs ? We use a proof engine . Now of course when everybody should put his metadata in whatever form they like no proof engine could ever work . We need a standard format for the metadata . So W3C devised RDF [RDFMS, RDFSc]. There is more to it than RDF but I will not consider this for the moment . See : Semantic web road map [SWR].

RDF consists of triples (in one presentation form) : subject-predicate –object e.g.

(the_cat,eats,mouse). RDF can be represented as a directed-labeled-graph , in XML-format , in N3 or in triples .

More precisely RDF is composed of :

a. a set of resources, R. There is a one-to-one function that maps a resource in R to a string; this string is called the Universal Resource Identifier (or URI) of the resource, and should conform to RFC2396.

(5) A set of literals, L. There is a one-to-one function that maps a literal in L to a string value.

(5) A set of statements, S. A statement s in S is a tuple R x R x { R union L }.

RDF Schema [RDFSc] extends this syntax with object-oriented features like class, subclass , ... and defines some restrictions for predicates like range and domain .

In http://www.w3.org/2000/10/swap/log.n3 logic extensions for RDF are defined like log:implies , log:forAll, This brings the swap area above the ontologic level into the logic level.

An example from [Euler] will make this much clearer :

(only relevant parts are shown)

1) The declaration (axiom) :

 <mailto:jos.deroo.jd@belgium.agfa.com> :member <http://www.agfa.com>.

 <http://www.agfa.com> :w3cmember <http://www.w3.org>.

 <http://www.agfa.com> :subscribed <mailto:w3c-ac-forum@w3.org/>.

 The data say that Jos De Roo is a member of agfa ; agfa is a member of w3c ; agfa is subscribed to the mailinglist of w3c .

{{:person :member :institution.

 :institution :w3cmember <http://www.w3.org>.

 :institution :subscribed :mailinglist} log:implies

{:person :authenticated :mailinglist}} a log:Truth; log:forAll :person, :mailinglist, :institution.

This says that if a person is member of an institution and the institution is member of the w3c and the institution is subsribed to the mailinglist then the person is authenticated for the mailinglist .

2) The query :

 _:who :authenticated <mailto:w3c-ac-forum@w3.org/>.

 This asks who is authenticated for the mailinglist of w3c.

3) The answer :

 (derived with the program Euler)

 {<mailto:jos.deroo.jd@belgium.agfa.com> :member <http://www.agfa.com>.

 <http://www.agfa.com> :w3cmember <http://www.w3.org>.

 <http://www.agfa.com> :subscribed <mailto:w3c-ac-forum@w3.org/>} log:implies

 {<mailto:jos.deroo.jd@belgium.agfa.com> :authenticated <mailto:w3c-ac-forum@w3.org/>}.

 This says that , derived from the premisses , Jos De Roo is authenticated for the mailinglist of w3c .

End of the example .

As an example of existing application of RDF I can cite the Mozilla browser who uses RDF for bookmarks, IMAP accounts, NNTP news server items , ... This browser is a standard component from e.g. the Red Hat Linux distribution . Here the metadata is used internally within the software system; nevertheless a merge can be done between internal rdf-files and external rdf-files .

In the .NET architecture Microsoft includes an RDFReader for displaying RDF files ; in the future query-mechanisms will be introduced.

We can then make a proof engine that uses RDF metadata as input to search the answer for a query . One such engine is the Euler program developed by Jos De Roo from Agfa [Euler]. This program takes for input: a set of metadata to search (also called axioms) and the query (also called lemma) ; there are some options too . The result is the proof (also in RDF format) which states whether the lemma is true or false i.e. whether the query is successful or not .

We ask immediately the question : what metadata do we search? It is too soon to answer this; in this perspective UDDI might be inspiring . We then need servers that contain references to metadata-banks thus are meta-metadata-banks .

What mechanism to use ? In [QL98] we read :

“Web applications require a fairly efficient implementation , so general theorem-prover systems are not likely to be appropriate . However logic programming and deductive database techniques address all the requirements and issues sketched above.” .

The Euler program is based on the Robinson resolution algorithm and uses backchaining [Rob] . Cycle detection is done by Euler paths . The program is experimental what is shown by the number of releases in 2001 : more than 100 (personal communication by Jos De Roo) .

To experiment with semantic web technologies Tim Berners-Lee made a web site called swap-site (http://www.w3.org/2000/10/swap) where a number of python programs can be found that manipulate RDF and XML-files . There is also a link to another site : the cwm site : http://infomesh.net/2001/cwm maintained by Sean B.Palmer. I will call these two sites “swap/cwm” as they really belong together . The program cwm (for Closed World Machine) was written by Tim Berners-Lee and Dan Conolly . Examples can be found on : http://www.w3.org/2000/10/swap/Examples .

“swap/cwm” contains conversion programs such as xml2rdf.py . It also contains the program cwm which can perform a search in rdf-data thereby using foreward chaining .

The goal thus is to develop search engines that work on rdf-files as well for input, query and output where those files are available in common xml-format . Besides that rdf has a well defined semantics . [RDFM8] .

The Euler program uses also the logic enhancements of the swap site as does cwm. Other rdf query engines do not so . This technology could be used also for building a stand alone knowledge system .

In the Euler program quit a lot of features have already been implemented . However following important features remain to be implemented :

· smart premis reordering

· use of builtins

· duplicate rule eliminating

· consistency check of the rules

· new test cases have to be tested

The program should also take into account the ontology defined by DAML+OIL .

However all the programs on swap/cwm are written in python and so the Euler program is little compatible with this site . Besides that the program has to be rewritten for efficiency .So it will not be sufficient to just make a technical translation from java to python . The python program will have to be well structured ; it must be extensible and easy modifiable also . This means that, though a model exists , the program must be rewritten from scratch .

 So what is the goal of this work ? It is to make a backchaining search engine available for the swap/cwm space with enough velocity; document it; make it extensible and place its usage in the broader context of the semantic web .

Literature:

 [TBL01] Scientific American May 2001 The semantic web by Tim Berners-

 Lee,James Handler, Ora Lassila .

 [RDFMS] Resource Description Framework (RDF) Model and Syntax

 Specification

 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
 [RDFSc] Resource Description Framework (RDF) Schema Specification 1.0

 http://www.w3.org/TR/2000/CR-rdf-schema-20000327
 [SWR] Semantic web roadmap by Tim Berners-Lee

 http://www.w3.org/DesignIssues/Semantic.html

[Euler] Euler proof mechanism by Jos De Roo

 http://www.afga.com/w3c/Euler

[Rob] Robinson proof mechanism --- author unknown

 http://www.cs.byu.edu/courses/cs236/lectures/PRED7/PredLogic7.html

[QL98] http://www.ilrt.bris.ac.uk/~ecdb/rdf/papers/QL98-queryservice
 A query and inference service for RDF by Stefan Decker,
 Dan Brickley,Janne Saarela,Jürgen Angele .

 [RDFM8] RDF Model Theory Editor: Patrick Hayes

 http://www.w3.org/TR/rdf-mt/
 swap/cwm :

 http://www.w3.org/2000/10/swap

 http://infomesh.net/2001/cwm

[DAML+OIL] DAML + OIL Reference description .

 http://www.w3.org/TR/daml+oil-reference
Alternative subject

Title : Investigation into the usability of proof engines for the semantic web with a practical implementation .

Here the same work is done (thus implementing the Robinson algorithm in Python) but a general investigation is done into proof engines and compared to the used Robinson technique .

Other alternative : a general study is done and a different algorithm than the Robinson is implemented (though it should probable also have to be with backchaining) .

Other alternative :

Title : How to build a knowledge system with rdf-technology .

Something which I’m wanting to do for a long time : build a knowledge system about birds . I would start with implementation of dichotomous tables in rdf/swap (these are tables consisting of a series of twofold yes-no questions : each part of the question when answered refers to a next question or a result thereby building a binary tree ; when a leaf is reached the solution is found . On the way to the solution data are gathered by responding to the questions . When the result is reached these data are displayed together with other data (all those data are saved of course in rdf-files) +pictures and/of animations .

So the logic asks the questions to the user (therefore a kind of display instruction should be builtin in the inference engine) .

The rdf-data can also be queried directly with the query engine . The user can choose whether intermediary results are displayed or not .

The knowledge system wouldn’t be build actually . Descriptions and schemas should however specify its workings . The translation of the Euler program in Pyhton should give however enough practical insight in applying queries to rdf data .

Bouwel, G.Naudts , 09/01/2001 .

Some remarks on Consistency check :

1) Rules : as the rules express logical statements it has to be controlled whether they are consistent . How do we check this ?

2) If we use rules from site A and rules from site B what then ?

3) RDF Schema :

Domain and range of a property can be restricted ; that is to say the subject has to be of a certain type or subclass thereof (domain) and so also the object (range) .

How can we check this ? We must make a list of restrictions as well of classes and subclasses and then for each property we have to check whether restrictions are defined .

 .

 A class can have a subclass . A property can have a subproperty .

 If we have the statement :

 (:a :b :c) log:implies (:d :e :f)

 and (g: rdfs:subclassOf :c)

 then we have :

 (:a :b :g) log:implies (:d :e :f)

 or we should have if the subclass is well defined .

 If we have

 (:a :b :c) log:implies (:d :e :f)

 and (g: rdfs:subpropertyOf :b)

 then we have

 (:a :g :c) log:implies (:d :e :f)k

 It seems pretty clear that consistency check must be based on a per site basis .

 We can impossibly take into account all possible sites .

 An description of the restrictions is found in [RDFSc]

Proposal for a table of contents

Table of contents

Synopsis

1) Introduction

2) RDF Name space and syntaxis - RDF Schema .

 The swap space and cwm .

3) Query-proof engines – theorem provers .

4) The Euler program description –workings

5) Test cases : 1) bird ontology 2) AGFA test case

6) The internet as a knowledge system

7) Optionally : how to build a knowledge system (stand-alone or multi-site)

8) Conclusion

Time division (rudimentary)

· 300 h : extensive description of Euler program

· 200 h : programming in Pyhton

· 150 h : building of test cases

· 150 h : writing of thesis

Note about a possible extra task

Apparently dixit Jos De Roo, there is a need for a formal description of the Euler program so everybody can make an asessment as to what this program exactly does . Such a description could best be made in RDF/RDFS/DAML+OIL/SWAP so we would need only a small bootstrap engine that loads the description . Making a complete, valid and tested description would be beyond the scope of this proposal; but a first study could be made .

[DAML_OIL]

