Specification of the inference engine in Haskell

As was said elsewhere and in accordance with the model theory of RDF a unification has to be done between sets of triples whereby some of these triples might be rules. This means the following definitions are needed: set of triples, triple, rule, unification of two triplesets, substitutions and lists of substitutions.

A triple is composed of a subject, a predicate and an object. Each of these can be a URI.An object can also be a literal. Subject, predicate and object can also be a variable. There exist 4 kinds of variables. First they are divided into two sets: local variables and global variables. Local variables are local to a tripleset. Global variables have as a scoop the whole database. A database is a set of triplesets. Both local and global variables can be existential or universal variables. The engine does not make a difference as it is presented here between existential and universal variables but this distinction might be useful in a future version. 

So the variables are: Var and EVar for the local variables, GVar and GEVar for the global variables.

Subject, predicate and object can also be sets of triples. Though there are no functions in RDF there exist the posibility for creating complex embedded structures with also embedded rules. 

This gives the following datastructure for a triple:

data Triple = (Subject, Predicate, Object) | Rule

type Subject = Atom

type Predicate = Atom

type Object = Atom

data Atom = URI | Literal | Var | EVar |  Gvar | GEvar | TripleSet

type URI = String

type Literal = String

type Var = String

type EVar = String

type GVar = String

type GEVar = String

A tripleset:

type TripleSet = [Triple]

and the database:

type DB = [TripleSet]

A rule is composed of a tripleset: the antecedents and a single triple: the consequent.

data Rule = (Antecedents, Consequent)

type Antecedents = TripleSet

type Consequent = Triple

Unifications are done making substitutions. A substitution is a tuple consisting of two atoms: 

type Substitution = (Atom, Atom)

type SubstitutionList = [Substitution]

type Response = [SubstitutionList]

A substitution list represents a single answer to a query. The variables in the query are replaced following the substitutions in the substitution list. A response is the list of all possible answers to the query.

The substitutions are made following the rules for determining the most general unifier. 

A substitution can be applied to a triple, a tripleset or a database.

A single query will be composed of a tripleset. 

type Query = TripleSet

Thus a SubstitutionList applied to a TripleSet of a Query will give a single answer to the query. 

The application of a substitution to a triple:

applySubstitutionToTriple :: Triple -> Substitution -> Triple 

applySubstitutionToTriple (subject, predicate, object) subst = 

                                (applySubstitutionToAtom subject, applySubstitutionToAtom predicate, applySubstitutionToAtom object)

applySubstitutionToTriple  (antecedents, consequent) =

                         (applySubstitutionToTripleSet antecedents,

                                 applySubstitutionToTriple consequent)

applySubstitutionToAtom :: Atom -> Substitution -> Atom

applySubstitutionToAtom [triple] subst = applySubstitutionToTripleSet [triple] subst

applySubstitutionToAtom t (t1, t2)


| t == t1 = t2


| otherwise = t 

In the unification of two triplesets each triple of the first tripleset is unified with the triples of the second tripleset till a unification is found. If no unification is possible the result is negative. The result of a unification is a boolean indicating the success or failure of the unification, a substitution and a tripleset. This tripleset constitutes a set of alternatives (see description of the backtracking machanism).

For the unification of two triples subject1 is unified with subject2, predicate1 with predicate2 and object1 with object2. 

unifyTwoTriples :: Triple -> Triple -> (Bool, SubstitutionList, TripleSet)

unifyTwoTriples (subject1, predicate1, object1) triple2@(subject2, predicate2, object2)

          | bool1 && bool2 && bool3 = (True, subst1:subst2:subst3, [triple2])


| otherwise = (False, [], [triple2])


where (bool1, subst1) = unifyTwoAtoms subject1 subject2

                     (bool2, subst2) = unifyTwoAtoms predicate1 predicate2

                     (bool3, subst3) = unifyTwoAtoms object1 object2

unifyTwoTriples  triple@(subject1, predicate1, object1) rule@(antecedents, consequent) = unifyTripleWithRule triple rule

unifyTwoTriples rule@(antecedents, consequent) triple@(subject1, predicate1, object1) = unifyTripleWithRule triple rule

But an triple can also be a rule so one more function is needed:

unifyTripleWithRule (unifyTwoRules could make sense but is not considered here). The returned tripleset are the antecedents of the rule.

unifyTripleWithRule :: Triple -> Rule -> (Bool, SubstitutionList, TripleSet)

unifyTripleWithRule (subject, predicate, object) (antecedents, consequent)

    | bool = (True, substList, antecedents)

    | otherwise = (False, [], tripleset) 

    where (bool, substList, tripleset) = unifyTwoTriples triple consequent

Then there rest the unification of two atoms giving their most general unifier. But first a help function is described that classifies all atoms into three types:

var,  name or tripleset.

defineAtomType :: Atom -> String

defineAtomType URI u = “string”

defineAtomType Var v = “var”

defineAtomType Evar v = “var”

defineAtomType Gvar v = “var”

defineAtomType GEVar v = “var”

defineAtomType Literal l  = “string”

defineAtomType TripleSet t = “tripleset”

unifyTwoAtoms :: Atom -> Atom -> (Bool, SubstitutionList)

unifyTwoAToms atom1 atom2

         | atomType1 == “var” and atomType2 == “var” and atom1 == atom2 =

                        (False, [(atom1, atom1)])     -- the substitution will be thrown away

         | atomType1 == “var” and atomType2 == “var” =

                        (True, [(atom1, atom2)])

         | atomType1 == “var” and (atomType2 == “string”
 or atomType2 == “tripleset”) = (True, [(atom1, atom2)])

         | (atomType1 == “string” or atomType1 == “tripleset”) and atomType2 == “var”) = (True, [(atom2, atom1)])

         | atomType1 == “string” and atomType2 == “String” and atom1 == atom2 = (True, [(atom1, atom2)])     

         | atomType1 == “tripleset” and atomType2 == “tripleset” = unifyTwoTerms atom1 atom2

         | otherwise = (False, [(atom1, atom2)])


where atomType1 = defineAtomType atom1

                     atomType2 = defineAtomType atom2

The function unifyTwoTerms is needed; unifyTwoTripleSets cannot be used because the return type is not the same. 

unifyTwoTerms :: TripleSet -> TripleSet -> (Bool, SubstitutionList)

unifyTwoTerms [] t = (False, [])

unifyTwoTerms t [] = (False, [])

unifyTwoTerms t1 t2 = (bool, substList)


where (bool, substList, tripleSet) = unifyTwoTripleSets t1 t2

A goal is a tripleset. Following the theory of resolution the negation of the goal is added to the database and then a unification process starts where the goal is matched against the triplesets of the database. This produces new alternative goals by the process of resolution. The function that performs this process is getAlts.  The function has as input the database, a goal and an integer; the output consists of alternatives and a bool indicating the success or failure of the unificiation. An alternative is a tuple made of a tripleset and a list of substitution. The application of this substitution list to the tripleset generates a new goal. 

The integer in the input renames the variables in the input goal i.e. the variables are prefixed with an integer that indicates the level of backtracking. This variable renaming is necessary because otherwise substitutions from a lower level interfere with substitutions from the current level.

type Alternatives = [(TripleSet, SubstitutionList)]

getAlts :: DataBase -> TripleSet -> Int -> Alternatives

getAlts [] _ = ([], [])

getAlts db [] = ([], []) 

getAlts db@(x:xs)  goal 


| bool  = (substList, tripleSet):getAlts xs goal


| otherwise = getAlts xs goal


where (bool, substList, tripleSet) = unifyTwoTripleSets goal                                                                                                         








(renameTripleSet x)

When the list of alternatives is empty then none have been found and the engine must backtrack in search of another solution: see further on. 

Finally these mechanisms have to be organised into a search tree. The classical algoritm uses a depth first search. The goal is matched against the database. From the alternatives one is selected as the new goal and the others are pushed on the stack. 

When a query is done the query is the initial goal for the inference engine. This initial goal is put in the goal list. The goal list is a list of triplesets. The query is a tripleset too.  The backtracking engine consists of three functions: solve, choose and backtrack. The way these functions call each other makes think of intertwined snakes. It demands some reflexion and playing for computer to see what happens here. Solve will take the topmost entry of the goallist and search to get a unification of this goal against the database. This gives a set of alternatives. Before doing this however the current list of substitutions is applied to the goal. The current substitution list is intially empty at the start of the search process. So solve needs a substitution list, a goal list, the database and also a stack which will be explained further on. The last parameter is the level of backtracking. What is returned is a list of substitution lists. Each substitution list is a solution to the query i.e. the variables in the query . 

    solve :: SubstitutionList -> [TripleSet] -> Stack -> DataBase -> Int ->

                            -> [SubstitutionList]

1) solve substitutionList [] stack db level =   substitutionList:substitutionList1

        where substitutionList1 = backtrack  stack db

     solve  substitutionList goals stack  db level

2)     | goalList == [] = solve  substitutionList [] stack db level

3)     | otherwise = choose substitutionList gs1 alts stack db level1

4)      where goalList = checkGrounded goals

                   gl@(g1:gs1) = goalList

5)                g2 = applySubstitutionList g1

6)                level1 = level + 1 

7)                alts = getAlts db g2 level1

Some more explanation is needed here.

4) goalList = checkGrounded goals

When a goal is grounded i.e. the tripleset does not contain anymore variables but onlyURI’s and literals the goal does not have to be unified anymore and will be deleted from the goal list.

5) g2 = applySubstitutionList g1

The current substitution list is applied to the goal before unification against the database .

6) The backtracking level is augmented.

7) alts = getAlts db g2

The alternative goals are searched by unification.

3) | otherwise = choose substitutionList gs1 alts stack db

choose essentially will choose an alternative and add it to the goal list; the other alternatives are pushed on the stack (see further). 

2) | goalList == [] = solve  substitutionList [] stack db

Here the goal list is empty because grounded goals were taken away. The function calls itself with an empty goal list.

1) solve substitutionList [] stack db =   substitutionList:substitutionList1

   where substitutionList1 = backtrack  stack db

The goal list is empty. A solution has been found. An entry will be popped from the stack so that the search can go on for another solution. The stack will be explained in the following function.

Now that the alternatives are found they must be explored one by one. So in the function choose one of the alternatives will be selected; the others will be pushed on the stack. When one of the alternatives has been investigated another one has to be retrieved from the stack. However it must find itself in the same environment it was when it was pushed on the stack. This environment is composed of a goal list and a substitution list. Thus the alternatives (except one) are pushed on the stack together with the goal list and the current substitution list. This gives the type of the stack:

type Stack = [(SubstitutionList, [TripleSet], Alternatives)]

choose selects the first alternative in the list of alternatives. One optimisation that can be done is slecting another wich might faster lead to the first solution. However when all solutions are searched for this will make no difference. 

Here then is the function choose:

    choose :: SubstitutionList -> [TripleSet] -> Alternatives -> Stack -> DataBase

                                          -> Int -> SubstitutionList

1) choose substList goals [] stack db level = backtrack  stack db level

2) choose substList goals alts@(a:as) stack db level =

        solve substitutionList1 goals1 stack1 db level

3)     where (tripleset, substitutionList) = a     

4)                stack1 = (substList, goals, as):stack

5)                substitutionList1 = substList ++ [substitutionList]

6) goals1 = tripleset :goals

The points will now be looked at in more detail.

3) An alternative, as was already said above, is composed of a tripleset and a substitutionList (containing the substitutions that were obtained when unifying a goal with the tripleset).

4) The other alternatives are ‘pushed’ on the stack.

5) The substitution list from the alternative is added to the current substitution list.

6) The chosen alternative is added to the goal list.

2) The function solve is now called in order to match the new goal against the database.

1)   If choose is called with an empty alternative list then there was a failure of unification and a backtrack is necessary to explore other branches of the solution tree. 

    backtrack :: Stack -> DataBase -> Int -> SubstitutionList

 1) backtrack [] _ _ = []

 2) backtrack stack db level

           = choose substList goals alts sts db (level-1) 

3) where st@((subst, goals, alts):sts) = stack

The backtrack function is simple. 

4) An entry is ‘popped’ from the stack thereby recreating a current substitution list, a goal list and alternatives. Now the function choose can be called again to select another alternative. The backtrack level is diminished with one. 

The figure gives an overview of the backtracking engine. 

[image: image1.png]The iniial query
=initial goallist

call sobve

PROOF

‘Add the goals
generated by rule 1 to
the goallst;

push the others on the
stack; those are
alternatives.

I nothing has been generatect
tnen bacrack else solve

CHOOS
osl21 gosint
gosi22 gosin2
gosi2n gosinn

substitions  substiutions
goslist goslist

THE BACKTRACKING INFERENCE ENGINE

Take a gosl from the goalist
and unify t with the detabase Aermtives
to generate alternatives. Rule 1 Rule n
Ifthe goallist is empty & generates:  generates
solution has been found; | goait1 goalnl el
backtrack to try to find goall2 Gan2  cpgose
other solutions
call choose goalln win ool VE

Take an entry from the stack; this creates a new
goallist; 3 new substitution and a list of alternative
goals; choose will be called then to select one of
the ahtematives and push the others on the stack
Ifthe stack is empty then the search for solutions

is finished. CKTRACK

retrieve

push

Each stack erfry contains @ st of aernative gosls; the substuion at
the moment of creating the ertry and the existing goalst t that moment.

€— THE STACK





1
8

