Notation 3
Here is an explanation of the points about Notation 3 or N3 that were used in this thesis. This language was developed by Tim Berners-Lee and Dan Connolly and represents a more human manipulable form of the RDF-syntax with in principle the same semantics. For somewhat more information see : [RDF Primer].

First some basic notions about URI’s : URI means Universal Resource Indicator. In this thesis only URI’s that are URL’s are used. URL means Universal Resource Locator. URL’s are composed of a protocol indicator like http and file (what are the most commonly used), a location indication like www.yahoo.com and eventually a local resource indicator like #subparagraph giving e.g . http://www.yahoo.com#subParagraph.

See also : http://www.w3.org/Adressing/ .

In N3 URI’s can be indicated in a variety of different ways :

· <http://www.w3.org/2000/10/swap/log#log:forAll> : this is the complete form. The namespace is in its complete form. The N3Parser (see further) always generates first the abbreviated form as used in the source ; this is followed by the complete URI.

· <#param> : the complete form is : <URL_of_current_document#param>.

· <> : the URI of the current document.

· :xxx : This is the use of a prefix. A prefix is define in N3 by the @prefix instruction :

@prefix ont: <http://www.daml.org/2001/03/daml-ont#>.

This defines the prefix ont: . Note the finishing point in the @prefix instruction.

So ont:TransitiveProperty is in full form <http://www.daml.org/2001/03/daml-ont#TransitiveProperty> .

· : : a single double point is by convention referring to the current document. However this is not necessarily so because this meaning has to be declared with a prefix statement :

@prefix : <#> .

Basically Notation 3 works with « triples » who have the form :

<subject> <verb> <object> where subject, verb and object are atoms. An atom can be either a URI (or a URI abbreviation) or a variable. But some more complex structures are possible and there also is some “ syntactic sugar”. Verb and object are also called property and value which is anyhow the semantical meaning.

Two substantial abbreviations are property lists and object lists. It can happen that a subject recieves a series of qualifications ; each qualification with a verb and an object,

e.g. :bird :color :blue ; height :high ; :presence :rare.

These properties are separated by a point-comma.

A verb or property can have several values e.g.

:bird :color :blue, yellow, black.

This means that the bird has 3 colors. This is called an object list. The two things can be combined :

:bird :color :blue, yellow, black ; height :high ; presence :rare.

The objects in an objectlist are separated by a comma.

A semantic and syntactic feature are anonymous subjects. The signs ‘[‘ and ‘]’ are used for this feature. [:can :swim]. means there exists an anonymous subject x that can swim ; e.g. I have seen a bird but I do not know which bird. The abbreviations for propertylist and objectlist can here be used too :

[:can :swim, :fly ; :color :yellow].

Some more syntactic sugar must be mentioned.

:lion :characteristics :mammal.

can be replaced by:

:lion has :characteristics of :mammals.

The words “has” and “of” are just eliminated by the parser.

:lion :characteristics :mammals.

can be replaced by:

:mammals is :characteristics of :lion.

Again the words “is” and “of” are just eliminated; however in this case subject and object have to be interchanged.

The property rdf:type can be abbreviated as “a”:

:lion a :mammal.

really means:

:lion rdf:type :mammal.

The property owl:equivalentTo can be abbreviated as “=”, e.g.

:daml:EquivalentTo = owl:equivalentTo.

meaning the semantic equivalence of two notions or things.

This notion of equality probably will become very important in future for assuring interoperability between different systems on the internet: if A uses term A meaning the same as term B used by B, this does not matter if this equivalence can be expressed and found.

The logic layer
In http://www/w3.org/200/10/swap/log# an experimental logic layer is defined for he semantic web. An overview of the most salient features (the N3Engine only uses log:implies, log:forAll, log:forSome and log:Truth):

log:implies : this is the implication.

{:rat a :rodentia. :rodentia a :mammal.} log:implies {:rat a :mammal}.

log:forAll : the purpose is to indicate universal variables :

this log:forAll :a, :b, :c.

indicates that :a, :b and :c are universal variables.

The word “this” stands for the scope enveloping the formula. In the form above this is the whole document. When between bracelets it is the local scope: see [PRIMER]. In this thesis this is not used.

log:forSome does the same for existential variables.

This log:forSome :a, :b, :c.

log:Truth : states that this is a universal truth. This is not interpreted by the N3Engine.

Here follow briefly some other features:

log:falseHood : to indicate that a formula is not true.

log:conjunction : to indicate the conjunction of two formulas.

log:includes : F includes G means G follows from F.

log:notIncludes: F notIncludes G means G does not follow from F.

Semantics of N3

The semantics of N3 are the same of the semantics of RDF. See [RDFM] which gives a model-theoretic semantics for RDF.

The vocabulary V of the model is composed of a set of URI’s.

LV is the set of literal values and XL is the mapping from the literals to LV.

A simple interpretation I of a vocabulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of I.

2. A mapping IEXT from IR into the powerset of IR x (IR union LV) i.e. the set of sets of pairs <x,y> with x in IR and y in IR or LV

3. A mapping IS from V into IR

IEXT(x) is a set of pairs which identify the arguments for which the property is true, i.e. a binary relational extension, called the extension of x.

Informally this means that every URI represent a resource which might be a page on the internet but not necessarily: it might as well be a physical object. A property is a relation; this relation is defined by an extension mapping from the property into a set containing pairs where the first element of a pair represents the subject of a triple and the second element of a pair represent the object of a triple. With this system of extension mapping the property can be part of its own extension without causing paradoxes.

As an example take the triple:

:bird :color :yellow.

In the set of URI’s there will be things like: :bird, :mammal, :color, :weight, :yellow, :blue etc...

In the set IR of resources will be: #bird, #color etc.. i.e. resources on the internet or elsewhere. #bird might represent e.g. the set of all birds.

There then is a mapping IEXT from #color (resources are abbreviated) to the set {(#bird,#blue),(#bird,#yellow),(#sun,#yellow),...}

and the mapping IS from V to IR:

:bird (#bird, :color (#color, ...

The URI refers to a page on the internet where the domain IR is defined (and thus the semantic interpretation of the URI).

Description of the inference engine N3Engine

1) Structure of the engine

The engine is composed of the following modules:

· N3Parser: this is a parser for Notation 3.

· LoadTree: the load module transforms the parser output into an XML tree. All abbreviations are resolved.

· GenerateDB: merges several input files into one XML data structure. Variables are marked by special tags (see further).

· Unify: this is the module that takes care of the unification. From this module the modules Builtins and Typing are called as extensions of the basic engine.

· N3Engine: this is a lightweight inference engine. It contains a backtracking resolution engine.

· Builtins: this module contains some builtins like owl:DifferentIndividualFrom and owl:List.

· Typing: this is a test whereby each atom recieves a type and only atoms of the same type can be unified.

· Xml: the module that deals with the XML tree.

· Utils: a module that contains some utilitarian constructions.
Fig. ... gives a graphical overview of the modules.

[image: image1.png]moie output modie

NaParser outpt NaParser: loat transformto
P i P el tormt =P e ——

output

moie output

ot loat b transtormation renstormafion autput.
P itree PPt e varables [P—"itree T

modie ot

preparation: make reparation output:

modle

unifcstion nole Lo g X1t

) A =

vesolion engine. engine ot

Tt -3 —_———

output

Fig. ... : the module structure of the engine.

The modules Builtin and Typing are called from the unification module.

 Development principles
 Writing complex programming systems is no easy task and a methodical way of working is well indicated. Here are the principles that were followed while designing the engine:

The program is split in as much modules as possible or sensible. The output of each module is made as simple and verifiable as possible. For the parser it is a simple streaming format, for the load modules, the database module and the transformation module (see further) the output is an xml-tree. For the final engine the output is xml or N3. All outputs are defined with a Backus-Naur form (to be found in the source code).

Each module consists of
a set of functions. The functions are kept as small as possible. Each function is tested immediately when it is made, in Haskell with an extra test function, in Python sometimes with a single instruction , mostly also with a test function. When all functions are made the whole module is subjected to the a battery of test cases including those of the Agfa-site [DEROO].

2) The N3Parser

 The parser is based on the grammar included in the annexes at the back and has been token from: http://2001/blindfold/sample/n3.bnf and the parser uses also the structures defined in N3 primer: http://www.w3.org/200/10/swap/Primer.htm.

The output data structure consists basically of triples (id,short value, full value) e.g.

Verb/@/:w3cmember/@/<authen#w3cmember>/@/. The value of the verb is a URI; in the N3 source the URI is abbreviated as :w3cmember. The parser (using the prefixes) gives also the complete URI. The tree structure of N3 is kept intact, but dummy subjects and verbs are introduced where these are missing (_subject and _verb).

How does the parser work?

The N3-file is read into a string (by the function readN3) . The parser then starts to “attack” this string. Leading spaces are always skipped. The mechanism is always the same: a function recieves the input string, a token is read, separation characters are thrown away, then the token is returned, the output string wich is the input string without the token and the thrown away characters and also a boolean flag is returned. If the flag is false then instead of the token an error message is returned and the input string is returned unchanged. After that the input string is synchronized on the next point in the string. Often a lookahead is done to see whether a certain closing character is present or not.

In the module Utils are some general functions for parsing:

(Note: some parameters are not indicated as they are not relevant for the discussion)

checkCharacter(c, s): checks whether a character c is present or not in the input string s. Returns a boolean value.

takec(c,s): will take a given character c from the input string s and returns the rest string and the flag True or False.

parseUntil(a, b): will take from string b until char a is met and returns (True ,c, b-c) where c is the part of b before a with a not included or it returns (False, "", b).

skipTillCharacter(c,s): skip the input string s till the character c is met.The rest of the string is returned without the character.

skipBlancs(s):skips the blancs in a string s and returns the stripped string.

parseComment(s): parses the comment from input s: a line starting with #. Returns the input string without the comment.

startsWith(s1, s2): looks if the input string s1 starts with a certain chain s2. Returns a booelan value.

containsString(s1, s2): test whether the first string s1 is contained in the second string s2. Returns a boolean value.

parseString(a,b): will parse string a from string b and returns (True, b-a) or (False,b).

In pseudo-language what the parser does looks like this:

parse tripleSet;.

while triple in tripleSet do {

 parse subject;

 while property in propertyList do {

 parse verb;

 while object in objectList do {

 parse object;

 }

 }

}

The parsing of a subject:

if subject = URI

 parseNode;

else parse tripleSet.

For an anonymous triple there is no subject to parse; but an anonymous subject _T$$$n is inserted. An anonymous subject is treated as an existential variable. Indeed the meaning of e.g. [a agg:company]. is that there exists a certain entity that is an agg:company.

Now some comment follows on the most important functions of the parser:

Note: those funcions have an input string and an output string as input because they can be called recursively; so both input and outptu have to be passes to the recursively called function.

parseN3(sin, sout): top level of the parser. It takes the inputstring sin (without leading spaces) and returns a string sout consisting of a list of identifier-value pairs separated by the separator e.g. Subject/@/:a/@/Verb/@/:b/@/Object/@/:c if the separator is /@/. This function will put the prefixes (@prefix = description of the namespaces) in a list.

parseTripleSet(sin, sout): parse a set of triples : insert "Set " in the outputstream; parse a subject (parseSubject) and call parsePropertyList. Then call recusively parseTripelSet ; then insert "EndOfSet ". Returns the output string sout and the rest of the input string sin.
parseTriple(sin, sout): parses a singel triple.

parseAnonSet(sin, sout): parse a set of anonymous triples : insert "AnonSet " and call parsePropertyList. Then call recusively parseAnon ; then insert "EndOfSet ". As there is no subject, it is not parsed either.

parsePropertyList(sin, sout): parses a verb and then calls parseNodeList .

parseProperty(sin, sout): parses a single property.

parseNodeList(sin, sout): parses nodes separated by “,” .Subject and verb are retrieved from a global list.

parseSubject(sin, sout): parse a subject.

parseVerb(sin, sout): parse a verb.

parseObject(sin, sout): parse an object.

The last three functions basically just call the following function.

parseNode(sin):function for parsing nodes.Input is the string to be parsed; it returns a multiple that exists of the node name, the value of the node and the rest string .

 Formats of a node (=URI):

 <#...> : a local reference.

 <> : this page.

 :... : a reference in this document

prefix:... : an abbreviation of a namespace.

<URI> : a complete URL.

".." : a constant

This parses the most basic entities. There are also functions for each of the different nodetypes which are called by parseNode.

Here are some details about what is done to the N3 input (see also the N3 primer referenced above):

- Points are eliminated.

- In ":a is :b of :c" of is eliminated and the verb :b is preceded by "Reverse" meaning subject and object have to be reversed.

- In ":a has :b of :c" has and of are eliminated.

- Anonymous nodes get an anonymous subject value = _T$$$1 ... _T$$$n where n is the index of the last anonymous node e.g. [a agg:company]. becomes _T$$$1 a agg:company.

- The parser is basically recursive descent with look-ahead features.

- When an error occurs the stream is synchronized on the next point and an error message is included in the stream.

- With thanks to Mark P.Jones for his inspiring prolog interpreter and the ideas about parsing included.

I give here a bnf of the output of the parser:

 ParserOutput ::= Triple (ParserOutput)*|

 TripleSet (ParserOutput)*|

 AnonSet (ParserOutput)*

 Triple ::= "Triple" Sep Subject Verb Object

 AnonTriple ::= AnonSubject Verb Object

 TripleSet ::= Sep Triple* "EndOfSet" Sep

 AnonSet ::= Sep AnonTriple* "EndOfSet" Sep

 Subject ::= "Subject" Sep String Sep|

 "Set" Sep TripleSet|

 "AnonSet" Sep AnonSet

 AnonSubject ::= "Subject" Sep "_T$$$" n Sep

 Verb ::= ["Reverse" sep] "Verb" Sep String Sep|

 "Set" Sep TripleList|

 "AnonSet" Sep AnonSet

Note: Reverse means subject and object must be reversed.

 Object ::= "Object" Sep String Sep|

 "ObjectSet" Sep TripleSet|

 "AnonSet" Sep AnonSet

 n ::= (digit)*

 Sep ::= Separator

 Prefix ::= "Prefix" Sep String Sep

 The separator is defined in the source code; might be : /@/

 _subject and _verb refer to the latest subject and verb.

Now follows an example from an input to the parser and the output.The example is from Jos De Roo. It is clear that the output is not very readable but it it is not meant to be read by humans.

Input:
$Id: authen.axiom.n3,v 1.2 2001/10/01 00:12:34 amdus Exp $

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix : <authen#>.

<mailto:jos.deroo.jd@belgium.agfa.com> :member <http://www.agfa.com>.

<http://www.agfa.com> :w3cmember <http://www.w3.org>.

<http://www.agfa.com> :subscribed <mailto:w3c-ac-forum@w3.org/>.

{{:person :member :institution.

 :institution :w3cmember <http://www.w3.org>.

 :institution :subscribed :mailinglist} log:implies

{:person :authenticated :mailinglist}} a log:Truth; log:forAll :person, :mailinglist, :institution.

Output:

Prefix/@/@prefix log: <http://www.w3.org/2000/10/swap/log#>./@/Prefix/@/@prefix : <authen#>./@/Subject/@/<mailto:jos.deroo.jd@belgium.agfa.com>/@/mailto:jos.deroo.jd@belgium.agfa.com/@/Verb/@/:member/@/<authen#member>/@/Object/@/<http://www.agfa.com>/@/http://www.agfa.com/@/Subject/@/<http://www.agfa.com>/@/http://www.agfa.com/@/Verb/@/:w3cmember/@/<authen#w3cmember>/@/Object/@/<http://www.w3.org>/@/http://www.w3.org/@/Subject/@/<http://www.agfa.com>/@/http://www.agfa.com/@/Verb/@/:subscribed/@/<authen#subscribed>/@/Object/@/<mailto:w3c-ac-forum@w3.org/>/@/mailto:w3c-ac-forum@w3.org//@/Set/@/Set/@/Subject/@/:person/@/<authen#person>/@/Verb/@/:member/@/<authen#member>/@/Object/@/:institution/@/<authen#institution>/@/Subject/@/:institution/@/<authen#institution>/@/Verb/@/:w3cmember/@/<authen#w3cmember>/@/Object/@/<http://www.w3.org>/@/http://www.w3.org/@/Subject/@/:institution/@/<authen#institution>/@/Verb/@/:subscribed/@/<authen#subscribed>/@/Object/@/:mailinglist/@/<authen#mailinglist>/@/EndOfSet/@/Verb/@/log:implies/@/http://www.w3.org/2000/10/swap/log#implies/@/Set/@/Subject/@/:person/@/<authen#person>/@/Verb/@/:authenticated/@/<authen#authenticated>/@/Object/@/:mailinglist/@/<authen#mailinglist>/@/EndOfSet/@/EndOfSet/@/Verb/@/a/@/http://www.w3.org/1999/02/22-rdf-syntax-ns#type/@/Object/@/log:Truth/@/http://www.w3.org/2000/10/swap/log#Truth/@/_subject/@/Verb/@/log:forAll/@/http://www.w3.org/2000/10/swap/log#forAll/@/Object/@/:person/@/<authen#person>/@/_subject/@/_verb/@/Object/@/:mailinglist/@/<authen#mailinglist>/@/_subject/@/_verb/@/Object/@/:institution/@/<authen#institution>/@/

3) The load module

This module transforms the output of the parser into a XML tree. The transformation is straightforward. Here follows the BNF of the output of the load module:

LoadOutput ::= “<DB>”

 TripleSet*

 “</DB>”|

 “<Prefixes>”

 prefix*

 “</Prefixes>”

TripleSet ::= “<TripleSet>” Triple* “</TripleSet>”

Embedded_TripleSet ::= Triple*

Triple ::= “<Subject>”

 URI|Embedded_TripleSet

 “<Verb>”

 URI|Embedded_TripleSet

 “<Object>“
 URI|Embedded_TripleSet

 “</Object></Verb></Subject>”

URI ::= “<URI>” UriDesignation “</URI>”

UriDesignation ::= String

One can see here that the complex structure of Notation 3 and the somewhat less complex structure of the parser output are reduced here to a fairly simple structure. Nevertheless this simple structure permits a great expressivity in making declarative statements.

The reason for the tag <TripleSet> will be explained when the example danb.n3 will be explained.

The mechanisms of this module are similar to the parser in the sense that the different constituents of a triple are called recursively.

For the presentation of a triple in XML a hierarchical structure has been chosen. This might seem strange at first sight but this is caused by the abbreviations of N3 , property list and object list. Following presentation was also possible:

 <subject> ... </subject>

 <propertylist>

 <property>

 <objectlist>

 <object> ... </object>

 </objectlist>

 </property>

 <property> ... </property>

 </propertylist>

but here also the structure is partially hierarchical and there are more tags i.e. a more complex structure and less easy for the programmer. Anyhow it is meant to be a structure for use by a computer; the output destined for humans should be in Notation 3 or an even more convivial language. Of course if al the abbreviations are taken away an output without hierarchy is possible.

<triple>

 <subject> ... </subject>

 <property> ... </property>

 <object> ... </object>

</triple>

All abreviations are resolved so that after this step only sets of complete triples remain. (Recall that anonymous triples did not exist anymore and were already taken away by the parser.) For rules this extension is not done as in that case it is not very interesting. Rules have a special fixed format.

!! not implemented yet !! Optionally by a flag embedded triples can be instantiated as stand-alone triples i.e. suppose there is a subject composed of a set of triples then all of these embedded triples will be instantiated a independent triples. If the user then makes a query that unifies with one of these triples he will recieve extra information (but of course he has to be aware that the search is not done in the original database but in a semantically different database.).

Overview of the functions of the load module:

saveEngine(filename): parse a file with name filename; transform the parsed file to an xml tree in a specific format and save the result to a file.

loadDB(s): transform the parsed file in string format (s) into an XML tree.

addPrefixToTag(tree): reads the prefixes from the prefix tree tree and adds them to the XML-tree.(The prefixes are saved in a separate tree during execution and the added to the general tree at the end).

loadString(s, prefixList, xmlTree): prefixes are added to the prefixlist and triples to the xmlTree. Depending on the input s loadString will call different functions:

· the token = “Prefix”: the prefix is added to the prefix tree immediately.

· the token = “Subject”: the function loadTriple is called.

· the token is “Set”: the function loadTerm is called.

· The token is “AnonSet”: the function loadTerm is called.

loadTerm(s, xmlTree): depending on the input s loadTerm will call different functions:

· the token = “Set”: loadTriple is called and then loadTerm is called recursively for handling the next triple or the end of the set.A tag Set is added to the XML-tree.

· the token = “AnonSet”: the same as for “Set”. A tag AnonSet is added to the XML-tree.

· the token is “Subject”: the function loadTriple is called.

· The token is “EndOfSet”: the function loadTriple is called. A tag EndOfSet is added to the XML-tree.

loadTriple(s): this function calls loadSubject and then calls loadPropertyList.

loadPropertyList(s, xmlTree): calls loadProperty; if the following token is “_subject” then loadProperty is called again, else the function returns.

loadProperty(s): calls loadVerb and then calls loadObjectList.

loadObjectList(s, xmlTree): call loadObject; if the next two tokens are “_subject” and “_verb”

then loadObjectList is called again, else the function returns.

loadSubject(s): depending on the input s loadSubject will call different functions:

· the token = “Subject”: a tag Subject with its content is added to the XML-tree.

· the token = “Set”: the Set is loaded and added to the subject.

· the token is “AnonSet”: the same as for Set.

loadVerb(s): depending on the input s loadVerb will call different functions:

· the token = “Verb”: a tag Verb with its content is added to the XML-tree.

· the token = “_subject”: the “_subject” is skipped and a tag Verb is added to the XML-tree.

· the token = “Set”: the Set is loaded and added to the verb.

· the token is “AnonSet”: the same as for Set.

loadObject(s): depending on the input s loadObject will call different functions:

· the token = “Object”: a tag Object with its content is added to the XML-tree.

· the token = “_subject”and the enxt token = “_verb”: the “_subject” and the “_verb” is skipped and a tag Object is added to the XML-tree.

· the token = “Set”: the Set is loaded and added to the object.

· the token is “AnonSet”: the same as for Set.

extendSubjects: extend propertylists (e.g. :a :b :c; :d :e; :f :g.) into separate triples (example becomes: :a :b :c. :a :d :e. :a :f :g.).

Input is an xml tree; output is a list of trees.

extendVerb: expand objectlists (e.g. :a :b :c, :d, :e.) into separate triples (example becomes: :a :b :c. :a :b :d. :a :b :e.).

Here is the output of the load module generated by the previous example:

<?xml version="1.0"?>

<DB>

 <TripleSet>

 <Subject>

 <URI>

 <mailto:jos.deroo.jd@belgium.agfa.com> mailto:jos.deroo.jd@belgium.agfa.com

 </URI>

 <Verb>

 <URI>

 :member <authen#member>

 </URI>

 <Object>

 <URI>

 <http://www.agfa.com> http://www.agfa.com

 </URI>

 </Object>

 </Verb>

 </Subject>

 </TripleSet>

 <TripleSet>

 <Subject>

 <URI>

 <http://www.agfa.com> http://www.agfa.com

 </URI>

 <Verb>

 <URI>

 :w3cmember <authen#w3cmember>

 </URI>

 <Object>

 <URI>

 <http://www.w3.org> http://www.w3.org

 </URI>

 </Object>

 </Verb>

 </Subject>

 </TripleSet>

 <TripleSet>

 <Subject>

 <URI>

 <http://www.agfa.com> http://www.agfa.com

 </URI>

 <Verb>

 <URI>

 :subscribed <authen#subscribed>

 </URI>

 <Object>

 <URI>

 <mailto:w3c-ac-forum@w3.org/> mailto:w3c-ac-forum@w3.org/

 </URI>

 </Object>

 </Verb>

 </Subject>

 </TripleSet>

 <TripleSet>

 <Subject>

 <Subject>

 <Subject>

 <URI>

 :person <authen#person>

 </URI>

 <Verb>

 <URI>

 :member <authen#member>

 </URI>

 <Object>

 <URI>

 :institution <authen#institution>

 </URI>

 </Object>

 </Verb>

 </Subject>

 <Subject>

 <URI>

 :institution <authen#institution>

 </URI>

 <Verb>

 <URI>

 :w3cmember <authen#w3cmember>

 </URI>

 <Object>

 <URI>

 <http://www.w3.org> http://www.w3.org

 </URI>

 </Object>

 </Verb>

 </Subject>

 <Subject>

 <URI>

 :institution <authen#institution>

 </URI>

 <Verb>

 <URI>

 :subscribed <authen#subscribed>

 </URI>

 <Object>

 <URI>

 :mailinglist <authen#mailinglist>

 </URI>

 </Object>

 </Verb>

 </Subject>

 <Verb>

 <URI>

 log:implies http://www.w3.org/2000/10/swap/log#implies

 </URI>

 <Object>

 <Subject>

 <URI>

 :person <authen#person>

 </URI>

 <Verb>

 <URI>

 :authenticated <authen#authenticated>

 </URI>

 <Object>

 <URI>

 :mailinglist <authen#mailinglist>

 </URI>

 </Object>

 </Verb>

 </Subject>

 </Object>

 </Verb>

 </Subject>

 <Verb>

 <URI>

 a http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 </URI>

 <Object>

 <URI>

 log:Truth http://www.w3.org/2000/10/swap/log#Truth

 </URI>

 </Object>

 </Verb>

 <Verb>

 <URI>

 log:forAll http://www.w3.org/2000/10/swap/log#forAll

 </URI>

 <Object>

 <URI>

 :person <authen#person>

 </URI>

 </Object>

 <Object>

 <URI>

 :mailinglist <authen#mailinglist>

 </URI>

 </Object>

 <Object>

 <URI>

 :institution <authen#institution>

 </URI>

 </Object>

 </Verb>

 </Subject>

 </TripleSet>

</DB>

This is quit long but has a simple structure. This is correct XML but this no RDF anymore.

The GenerateDB module
This module takes care of the transformation of the input from the load module into the database used in the engine.

The atoms which have a tag “URI” and are variables have their tag changed to “Var” for a universal variable and to “EVar” for an existential variable if they are local variables; if they are global variables the tags will be respectively “GVar” for universal and “GEVar” for existential variables. Anonymous subjects of the form _T$$$n have their “URI”-tag also changed to “Evar” as they are really existential variables, however only in the query. In the axiom files they mean: there is some subject with this property so it is permitted to suppose the existence of an atom _T$$$n. This is existential operator elimination. Statements who only say something about variables are then taken away. All local variables are prefixed with a number which is unique within a block = a set of triples.

Generate a database for the resolution engine

Input is the output from Load.py; eventually several load

structures are fused.

All property lists and object lists are extended i.e.

only complete triples rest.

Optionally embedded triples are duplicated as "stand-alone" triple.

All variables are detected and recieve a unique number within their scope.

Universal variables recieve a tag "Var" and existential variables

recieve the tag "Evar".

The output has three parts per input file:

the prefix list, the list of variables and the triple database.

The data structure has been inspired by the Euler program

 by Jos De Roo : http://www.agfa.com/Euler

BNF for rules (in N3):

 rule ::= "{" triplelist verbimplies triplelist "}" ["a" objectTruth ";"]

 verbforall|verbforsome objectforall

ruleSubject ::= triplelist

triplelist ::= "{" triple* "}"

triple ::= as usual

verbimplies ::= "<http://www.w3.org/2000/10/swap/log#implies>"

objectTruth ::= "<http://www.w3.org/2000//10/swap/log#Truth>"

verbforall ::= "<http://www.w3.org/2000/10/swap/log#forall>"

verbforsome ::= "<http://www.w3.org/2000/10/swap/log#forsome>"

objectforall ::= URI ["," URI]*

BNF of the database:

database ::= clause*

clause ::= rule | tripleset

tripleset ::= triple*

triple ::= subject verb object [number] [ref1] [ref2]

subject ::= triplelist | "<subject>" content "</subject<"

content ::= URI | var | vare | gvar |gevar

** The first string is the abreviated URI; the second is the full URI.

** For a var the tag uri is simply changed into the tag var.

** var is an universal local variable; vare is an existential local variable

** gvar is a universal global variable; gevar is an existential global variable.

URI ::= "<URI>" String String "</URI>"

var ::= "<Var>" String String "<Var>"

vare ::= "<EVar>" String String "<EVar>"

gvar ::= "<GVar>" String String "<GVar>"

gevar ::= "<GEVar>" String String "<GEVar>"

verb ::= "<Verb>" content "</Verb>"

object ::= triplelist | "<Object>" content "</Object>"

triplelist ::= triple*

rule ::= "<Rule> <Subject>" triplelist "<Verb> <URI>"

 log:implies <http://www.w3.org/2000/10/swap/log#implies>

 "</URI> <Object>" triple "</Object> </Verb> </Subject>"

 ["<Verb> <URI>"

 a http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 "</URI> <Object> <URI>"

 log:Truth http://www.w3.org/2000/10/swap/log#Truth

 "</URI> </Object> </Verb>]

 (<Verb> <URI>"

 log:forAll http://www.w3.org/2000/10/swap/log#forAll

 "</URI>" objectlist "</Verb>)?

 (<Verb> <URI>"

 log:forSome http://www.w3.org/2000/10/swap/log#forSome

 "</URI>" objectlist "</Verb>)?

 </Rule>"

objectlist ::= ("<Object>" content "</Object>")*

It is supposed that the prefix log is used for the SWAP space.

On the scope of variables:

If variables are declared with a separate triple like:

this log:forAll :a, :b, :c.

their scope is global. Beware!! Global variables can give unattented results with a resolution engine.

When they are declared within a tripleset their scope is local.

There are existential and universal variables giving following

variable tags: Var, EVar, GVar and GEVar.

Anonymous variables (_T$$$X) have type EVar in the query but

not in axiom-files (otherwise they could provoke non-grounded atoms).

Functions for the preparation of the database
mergeInput(inputfiles): the input files are merged into one database. Their origin might be from different internet sites. The last file is the query file who can contain several sets of triples. Each set of triples constitutes a single question to the database.

getVariables(tree): this makes a list of all variables in a database (XMLTree).

markAllVariables(tree): here tha tag of the variables which is “URI” is changed to the specific variable tag: “Var”, “Evar”, “Gvar” or “GEVar”. This is for easy processing by the inference engine.

4) The unification module:
Unification is done on the level of triple sets i.e. a collection of triples.

Functions for substitutions

applySubstitution(substitution, xmlTree): apply a substitution to a XML tree.

A substitution is represented as a list of tuples (in Haskell):

type Subst = [(term, term)] where each term can be a variable, a URI or a tripleset. The composition of two substitutions is just the merge of two lists.

applySubstitutionToList (subst, treeList): apply a substitutino to a list of trees.

showSubstitution(substitution): transform a substitution to a printable string.

showSubstitutionList(substitutionList): transform a list of substitutions to a printable string.

Unification
unifyWithRule(tripleSet, rule): unify a block with a rule. The first clause is a tripleSet.

The second is a rule following the bnf for rules given higher. The last returned parameter is the list of newly generated goals.

unifyTwoTripleSets (tripleSet1, tripelSet2):

unify the triples in two triplesets. The mechanism is: each triple in tripelSet1 must match with a triple in tripleSet2.

unifyTripleWithTripleSet(triple, tripleSet): the triple must match with one of he triples in the tripleSet.

unifyTwoTriples(tripel1, triple2): unify two triples; returns a boolean value indicating the succes and if successfull a substitution; if not successfull the null substitutiuon.

unifyAtoms(atom1, atom2, substitution): unify two atoms (subject, verb or object). substitution is the currently valid substitution. Returns a substitution and a boolean. Possibilities: URI with URI;(G) (E)VAR with URI; (G)(E)VAR with(G) (E)VAR, tripelSet with tripleSet; tripelSet with variable.

unifyTwoTerms(term1, term2): this function unifies two terms; each term is a list of triples. Returns a boolean value and a substitution.

unifyTripleWithTerm(triple, term): unify a triple with a term. A term is a list of triples. Returns a boolean value and a substitution.

unifyVerbs: unify a verb with a list of verbs.

unifyObjects: unify an object with a list of objects.

5) The resolution engine

The basic ideas for a resolution engine that works with Notation 3 input were developed by De Roo [DEROO] with the Euler program. Notation 3 has the same semantics as RDF and is just another notation. In order to make proof deduction and verification necessary there is need for logical primitives on top of RDF. This basic logic is defined in the SWAP space [SWAP].

A simple example will demonstrate what it is all about. The example is from Jos De Roo. Some extra comments are added to the original.

$Id: authen.axiom.n3,v 1.2 2001/10/01 00:12:34 amdus Exp $

The prefixes are the definitions of the namespaces.

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix : <authen#>.

The following rule has the meaning: if a person is a member

of an institution and if that institution is a member of

the W3C and it is subscribed to the mailinglist then

this person is authenticated to acces the mailinglist.

{{:person :member :institution.

 :institution :w3cmember <http://www.w3.org>.

 :institution :subscribed :mailinglist} log:implies

{:person :authenticated :mailinglist}} a log:Truth; log:forAll :person, :mailinglist, :institution.

From the rule above and the facts hereunder can be deduced

that Jos De Roo is authenticated for the mailinglist from the W3C.

<mailto:jos.deroo.jd@belgium.agfa.com> :member <http://www.agfa.com>.

<http://www.agfa.com> :w3cmember <http://www.w3.org>.

<http://www.agfa.com> :subscribed <mailto:w3c-ac-forum@w3.org/>.

Above is what is called the axiom file: composed of facts and rules.

This axiom file constitutes the database when read into the engine. A query can then be made by using the following query file:

$Id: authen.lemma.n3,v 1.3 2001/10/15 22:40:11 amdus Exp $

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix : <authen#>.

Here the engine is asked to give all persons that are

authenticated for the W3C mailinglist.

_:who :authenticated <mailto:w3c-ac-forum@w3.org/>.

Now the engine will resolve this by unifying triples. First the following two triples will be unified clearly giving the substitution {(-:who, :person), (<mailto:w3c-ac-forum@w3.org/>, :mailinglist)}.

:person :authenticated :mailinglist.

_:who :authenticated <mailto:w3c-ac-forum@w3.org/>.

As the unification was with the consequent of a rule then the antecedents of the rule will be added to the list of goals. Those antecedents are the following triples:

:person :member :institution.

:institution :w3cmember <http://www.w3.org>.

:institution :subscribed :mailinglist.

Now the engine will unify the first of these triples with the “data” triple:

<mailto:jos.deroo.jd@belgium.agfa.com> :member <http://www.agfa.com>.

giving the substitution {(:person, <mailto:jos.deroo.jd@belgium.agfa.com>), (:institution, <http://www.agfa.com>)}.

Remember that :person, :institution and :mailinglist are variables.

Next :institution :w3cmember <http://www.w3.org>. will be unified with

<http://www.agfa.com> :w3cmember <http://www.w3.org>.

giving the substitution {(:institution, :w3cmember)}.

Finally :institution :subscribed :mailinglist.

Will be unified with

<http://www.agfa.com> :subscribed <mailto:w3c-ac-forum@w3.org/>.

Giving the substitution {(:institution, <http://www.agfa.com>),(:mailinglist, <mailto:w3c-ac-forum@w3.org/>)}.

At this moment following substitutions were made:

{(-:who, :person), (<mailto:w3c-ac-forum@w3.org/>, :mailinglist)}.

{(:person, <mailto:jos.deroo.jd@belgium.agfa.com>), (:institution, <http://www.agfa.com>)}.

{(:institution, :w3cmember)}.

{(:institution, <http://www.agfa.com>),(:mailinglist, <mailto:w3c-ac-forum@w3.org/>)}.

When applied to the query this is what happens to the variable : _ :who.

-:who (:person (<mailto:jos.deroo.jd@belgium.agfa.com> so the answer to the query is: <mailto:jos.deroo.jd@belgium.agfa.com>.

This unification process seems to be a simpler than the unification in e.g. Prolog. In the above example simple variables and URI’s are matched with each other. However there are some complications.

In the first place a subject or a verb or an object in a triple can be composed i.e. it can be a tripleset instead of an atom (URI or variable). Thus if {:a :b _:x} must be unified with {:a :b { :c :d :e.}} the variable _:x will be replaced by the tripleset {:c :d :e}. In practice this will not happen often but it is possible.

A further complication is illustrated by the following example provided by Dan Brickley, here a little abbreviated. The example is to be found on the Agfa-site [AGFA].The axiom-file is:

$Id: danb.n3,v 1.2 2001/10/01 00:12:35 amdus Exp $

@prefix agg: <http://example.com/xmlns/aggregation-demo#> .

@prefix web: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

 [a agg:Company;

 agg:corporateHomepage <http://megacorp.example.com/>;

 agg:name "MegaCorp Inc.";

 agg:owner [

 a agg:Person;

 agg:name "Mr Mega";

 agg:personalMailbox <mailto:mega@megacorp.example.com>;

 agg:personalHomepage <http://megacorp.example.com/~mega>;

 agg:age "50"];

 agg:ticker "MEGA"].

 [a agg:Company;

 agg:corporateHomepage <http://gigacorp.example.com/>;

 agg:name "GigaCorp Inc.";

 agg:owner [

 a agg:Person;

 agg:name "Mr Giga";

 agg:personalMailbox <mailto:giga@gigacorp.example.com>;

 agg:personalHomepage <http://gigacorp.example.com/~mega>;

 agg:age "46"];

 agg:ticker "GIGA"].

and the query-file is:

$Id: danb-query.n3,v 1.2 2001/10/01 00:12:35 amdus Exp $

http://rdfweb.org/2001/01/design/smush.html

(Q1) What are the technology interests of persons who own companies that have an ethical

policy committment to the policy stated in the document

http://dotherightthing.example.org/policy.xhtml

@prefix agg: <http://example.com/xmlns/aggregation-demo#>.

@prefix : <danb#>.

this log:forSome :hp, :mb.

[a agg:Company; agg:corporateHomepage :hp; agg:owner [a agg:Person; agg:personalMailbox :mb]].

Here follows by way of example a listing of the first block in the axiom-file without the abbreviations:

_T$$$1 a agg:Company.

_T$$$1 agg:corporateHomepage <http://megacorp.example.com/>.

​_T$$$1 agg:name "MegaCorp Inc.".

_T$$$1 agg:owner {_T$$$2 a agg:Person.

 _T$$$2 agg:name “Mr Mega”.

 _T$$$2 agg:personalMailbox <mailto:mega@megacorp.example.com>.

 _T$$$2 agg:personalHomepage <http://megacorp.example.com/~mega>.

 _T$$$2 agg:age “50”. }

_T$$$1 agg:ticker “MEGA”.

Instantiations of the anonymous objects are added in the form _T$$$n.

Here is a complex structure where the “[]” stand for anonymous triples i.e. triples with an anonymous subject. The “;” serves further for repeating this anonymous subject in different triples. In the axiom-file there are thus three blocks between “[“ and “]” each containing different triples. To complicate even more some triples have an object that is composed by a block of anonymous triples. In one block the “,” is used to make a set of triples that have subject and verb in common but have each a different object. There are two blocks in the example; each block describes a company; the corporate home page; the name of the company and the owner of the company. These informations in a block belong together.

Now how is a unification done with this example?

In N3Engine all the above abbreviations are resolved so that only triples and sets of triples rest. If unification is now done on the level of a triple then following answer is possible:

[a agg:Company; agg:corporateHomePage <http://megacorp.example.com/> ; agg:owner [a agg:Person; agg:personalMailbox <mailto:giga@gigacorp.example.com>]].

where the name of the corporate homepage is from a different company than the mail-address. So the unification has to be done on the level of a block of triples. It probably should be best if such things could be laid down in some specification. This is the reason why the tag <TripleSet> was introduced in the load module so that the N3Engine is able to recognize a block.

Another difficulty with the unification mechanism comes from the fact that the logic defined in the SWAP space is higher order logic. Following example will illustrate this.

File ontology1.axiom.n3

After a suggestion of Jos De Roo

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix ont: <http://www.w3.org/2002/07/daml+oil#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <ontology#>.

{{:p a owl:TransitiveProperty. :c1 :p :c2. :c2 :p :c3} log:implies {:c1 :p :c3}} a log:Truth;log:forAll :c1, :c2, :c3, :p.

rdfs:subClassOf a owl:TransitiveProperty.

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

:mouse rdfs:subClassOf :rodentia.

:piep rdfs:subClassOf :mouse.

File ontology1.query.n3

After a suggestion by Jos De Roo

@prefix ont: <http://www.w3.org/2002/07/daml+oil#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <ontology#>.

?:who rdfs:subClassOf :vertebrae.

The solution is (by N3Engine.050802.hs):

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :vertebrae.

:mouse rdfs:subClassOf :vertebrae.

:piep rdfs:subClassOf :vertebrae.

Now what does this do? In the axiom-file rdfs:subClassOf is declared to be a owl:TransitiveProperty. In the facts a subclass hierarchy is declared; all subclasses mentioned are subclasses of :vertebrae. The engine finds the right solution. So what is the problem?

The problem lies in the declaration of what a transitive property is:

{{:p a owl:TransitiveProperty. :c1 :p :c2. :c2 :p :c3} log:implies {:c1 :p :c3}} a log:Truth;log:forAll :c1, :c2, :c3, :p.

In this rule are the triples:

:c1 :p :c2.

:c2 :p :c3.

:c1 :p :c3.

Now those triples unify with every other triple as they only contain variables. This causes a combinatorial explosion in the engine. The goals created by the rule: :c1 :p :c2. :c2 :p :c3. will match with all other triples in the database causing numerous new paths in the dept-first search of the resolution engine. The solution to this might be: making the transitivity of subClassOf explicit or working with a typed engine: see further the text on typed resolution engine.

The implementation of ontological restraints by use of a typed resolution engine

In RDFS a basic ontology is introduced as an extension to RDF. Further work on ontology is done by the WebOnt working group of the W3C [WEBONT]. Such an ontology imposes a classification as well as restrictions on RDF-data. In the following a general scheme for implementing such ontologies in a resolution engine as well as a specific scheme for the inference engine N3Engine based on N3 are discussed.

A resolution engine generally consists of a database of clauses on the one hand and a query on the other hand where solutions are found by resolution. The resolution is done by the unification of terms and the sustitution of variables.

The implementation of an ontology can be done by attaching types to the atoms of the database e.g. in a Prolog-like way:

SubClassOf(Vertebrae, Mammalia).

SubClassOf(Mammalia, Rodentia).

TransitiveProperty(SubClassOf).

Because we define SubClassOf to be a transitive property the query SubClassOf(Vertebrae,Rodentia) should be positive.But how do we define TransitiveProperty in Prolog?

In N3 this is defined by:

{:p a :TransitiveProperty. :a :p :b. :b :p :c.} log:implies { :a :p :c.}; log:forAll :a, :b, :c, :p.

This cannot be done in Prolog as quantification over a property is not possible. The engine N3Engine can work with such a definition. If the following axiom is given:

{{:p a owl:TransitiveProperty. :c1 :p :c2. :c2 :p :c3} log:implies {:c1 :p :c3}} a log:Truth;log:forAll :c1, :c2, :c3, :p.

rdfs:subClassOf a owl:TransitiveProperty.

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

and the following query is done:

?:who rdfs:subClassOf :vertebrae
the answer will be:

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :vertebrae.

Note: “a” is translated to rdf:type.

Note: relevant namespaces:

The site where the experimental logics for the semantic web are defined :

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

The site for the ontology defined by the WebOnt working group :

@prefix owl: <http://www.w3.org/2002/07/owl#> .

The XML Schema definitions:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

The rdf Schema definitions:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

The rdf syntax definition:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

However this method is not practical: the triples :c1 :p :c2. :c2 :p :c3. :c1 :p :c3. can be unified with all other triples as :c1, :c2, :c3 and :p are all variables. This then will provoke a combinatorial explosion. A possible solution is to let the engine produce a rule:

{:a rdfs:subClassOf :b. :b rdfs:subClassOf :c.} log:implies {:a rdfs:subClassOf :c}; log:forAll :a, :b, :c.

Here the triples will only be unified with other triples who have the predicate rdfs:subClassOf thereby countering the combinatorial explosion. The rule for transitive property must be dropped from the database.

Another solution is typing. All atoms in the database are given a type and implicitly all terms possess a (composed) type. When unification takes place only terms of the same type can be unified. How is this done in the previous example?

All atoms belong automatically to a superclass e.g. called :resource. Thus :vertebrae will be of the type :resource. :mammalia will have the type :vertebrae. :rodentia will have the type :mammalia. However clearly it must be possible to unify :rodentia with a variable of type :vertebrae. So the unification engine must take into account the class hierarchies. So the need is for: typing rules and rules for typed unification.

This gives the following model for implementation in N3Engine taking into account the triple structure (subject - predicate(or verb) – object) where subject, predicate or verb are either URI’s or variables. Variables represent URI’s. Subject, predicate and object are commonly named atoms. To implement the typing structure every atom is tagged with type information that permits to define the type and the unification of types. The tagging is to be taken literally as the data-structure inside N3Engine is an XML-structure. The typing and unification rules are described in a N3-file. The engine determines the types and matching following the rules layed down in this N3-file. The execution of those rules is done by formulating a query that is executed by the engine itself. Suppose there are two atoms t1 and t2 each with their type information , let’s say type1 and type2. So the engine might issue a query: :type1 :unification :type2 against the axiom-file typing_rules.n3. If the answer to that query is positive then the two types match, if not the two types do not match.

As an example the following rules might be in the file typing_rules.n3:

This rule defines a transitive property

The variable p will recieve the type

owl:TransitiveProperty; the others will recieve the type :resource

{{:p a owl:TransitiveProperty. :a :p :b. :b :p :c.} log:implies {:a :p :c}} a log:Truth; log:forAll :a, :b, :c, :p.

rule for atoms with type resource

probably best to built into the engine???

:a and :b recieve type resource

{{:a a :resource. :b a :resource.} log:implies {:a :unification :b}} a log:Truth; log:forAll :a, :b.

rule for subClassOf

all predicates subClassOf will recieve the type

owl:TransitiveProperty

rdfs:subClassOf :type owl:TransitiveProperty.

user class definitions

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

The last two rules are added (perhaps temporarily) from the user-input.

Then the following query might be issued:

:rodentia rdfs:subClassOf :vertebrae.

If the query is: ?:x rdfs:subClassOf :vertebrae. then ?:x will have the type class. Thus ?:x will only unify with URI’s of type class.

This will provoke a unification with :a :p :c. of the owl:TransitiveProperty rule. As :p is a owl:TransitiveProperty the query :rdfs:subClassOf :type owl:TransitiveProperty will be launched and (of course) be answered positively. This query will only be launched once as the type owl:TransitiveProperty will be added to the possible type of rdfs:subClassOf. It follows that the engine must dispose of a list of atoms with their types and restrictions. The resolution database is built with pointers to the list of atoms. This enhances the efficiency of the engine as now no longer enormous masses of alphanumerical data to have to be manipulated in stacks. Other queries e.g. :bird :has :feathers will not be matched with this rule because :has does not have the owl:transitiveProperty. In this way the combinatorial explosion is stopped.

Other ontological restrictions can be handled in the same way.

rdfs:property and rdfs:subPropertyOf can be treated in the same way.

statements about rdfs:propertyOf

this shows that an atom can have more than one type.

rdfs:subPropertyOf :type owl:transitiveProperty.

rdfs:subPropertyOf :type rdfs:property .

rule for subPropertyOf

{{:a rdfs:subPropertyOf :b. :b rdfs:propertyOf :c.} log:implies {:a rdfs:PropertyOf :c}} a log:Truth; log:forAll :a, :b,:c.

user statements

:bird_color rdfs:property :bird.

:wing_color rdfs:subPropertyOf :bird_color.

Query: :wing_color rdfs:property :bird.

Here types are not necessary for the unification.

Of course subProperty and property will only unify with subProperty or property.

rdfs:range and rdfs:domain impose restrictions on a property in the sense that things having the property must be of the class indicated by rdfs:range and the values of the property must be of the class rdfs:domain.

:wingSize a rdfs:property.

:wingSize rdfs:range :length.

:wingSize rdfs:domain :bird.

When the query:

:aquila :wingSize :1.

Is launched the engine will find in its atom-table that wingSize is a rdfs:property with restrictions domain = bird and range = length.

It therefore will launch the queries:

:aquila a :bird.

:1 a :length.

and probably get a positive result (but not if the user did not define :aquila to be a bird.)

There are two ways properties and restraints are put in the atom-list:

1) during a preparatory fase the user-input is scanned and types and restraints are determined following the rules in the file preparatory_types.n3.

2) if, during execution, the type of an atom is determined or a restraint is inherited (as a consequence of type determination) these are added to a temporary atom-list that contains the atoms for the blocks in the goal list; this temporary atom-list must be saved on the stack for backtracking purposes. The typing and restriction info for atoms in the database does not change anymore after the preparatory phase.

3) The same principle is valid for variables.

Here are some more examples taken from owl:

[see http://www.agfa.com/w3c/euler/owl-rules]

owl:inverseOf is defined as owl:inverseOf a rdf:property. It defines the ‘inversability’ of two predicates. This gives the following rule:

{{:p a owl:inverseOf. :q a owl:inverseOf. :p owl:inverseOf :q. :s :p :o.} log:implies {:o :q :s.}} a log:Truth; log:forAll :p, :q,:s, :o.

Here :p and :q will recieve the type owl:inverseOf so :o :q :s. will only match with properties that have the type owl:inverseOf.

This mechanism works also for following owl-items:

owl:samePropertyAs

owl:sameClassAs

owl:equivalentTo

An additional remark is necessary concerning owl:equivalentTo. Indeed instead of working with types for handling equivalences it seems better to eliminate them in a preparatory phase; if it is known that two atoms are equivalent one of the two can be supresses and replaced with the other and the equivalence statement can be deleted. This can also be done if equivalences are concluded during resolution execution.

Conclusion:

1) The use of typing is an important technique in the prevention of combinatorial explosions, certainly when general clauses are used that unify with all other clauses (like the general rules produced by WebOnt).

2) The use of typing also is a means to control correct usage; if a property is used with a certain domain and range the types of subject and object will be controlled and, if not good, no unification will take place.

So typing will enforce the correct usage of properties like class, subClassOf, subPropertyOf etc...

Structure of the engine

The inference engine : this is where the resolution is executed. There are three parts to this engine:

a) solve : the generation of new goals by selection of a goal from the goallist by some selection procedure and unifying this goal against all blocks of the database thereby producing a set of alternative blocks. If the goallist is empty a solution has been found and a backtrack is done in search of other solutions.

b) choose: add one of the alternative blocks to the goallist; the other ones are pushed on the stack. Each set of alternative goals is pushed on the stack together with the current goallist and the current substitution. If solve did not generate any alternative goals there is a failure (unification did not succeed) and a backtrack must be done to get an alternative goal.

c) backtrack: an alternative goal is retrieved from the stack and added to the goallist. If the stack is empty the resolution process is finished. A failure occurs if for none of the alternatives a unification is possible; otherwise a set of solutions is given.

[image: image2.png]The iniial query
=initial goallist

call sobve

PROOF

‘Add the goals
generated by rule 1 to
the goallst;

push the others on the
stack; those are
alternatives.

I nothing has been generatect
tnen bacrack else solve

CHOOS
osl21 gosint
gosi22 gosin2
gosi2n gosinn

substitions substiutions
goslist goslist

THE BACKTRACKING INFERENCE ENGINE

Take a gosl from the goalist
and unify t with the detabase Aermtives
to generate alternatives. Rule 1 Rule n
Ifthe goallist is empty & generates: generates
solution has been found; | goait1 goalnl el
backtrack to try to find goall2 Gan2 cpgose
other solutions
call choose goalln win ool VE

Take an entry from the stack; this creates a new
goallist; 3 new substitution and a list of alternative
goals; choose will be called then to select one of
the ahtematives and push the others on the stack
Ifthe stack is empty then the search for solutions

is finished. CKTRACK

retrieve

push

Each stack erfry contains @ st of aernative gosls; the substuion at
the moment of creating the ertry and the existing goalst t that moment.

€— THE STACK

Fig. A schematic overview of the backtracking engine.

What is called above a substitution is a set of transformations of variable and atoms into variables and atoms. For each solution to a query there exists such a set of transformations that will transform the variables in the query into grounded atoms. Thus in fact the answer to the query is a list of substitutions = a list of lists of transformations.

The backtracking resolution mechanism in pseudo-language

Note: a block = a set of triples is what corresponds in prolog to a clause.

goalList = all blocks in the query.

do {

 while (! goalList = empty) {

 select a goal.

 If this goal is a new goal unify this goal against the database producing a set of alternative goals (= all the blocks which unify with the selected goal) and eliminate this goal from the goalList

 else the engine is looping; backtrack to the proper choicepoint.

 add one of this alternative set to the goalList and push the others on the stack

 } // while

 retrieve an alternative from the stack

} until (stack == empty)

The goal which is selected from the goalList is the head of the goalList. The alternative which is chosen from the list of alternatives is the first alternative in the list.

The mechanism which is followed is in fact SLD-resolution: Selection, Linear, Definite. There is a selection function for blocks; a quit simple one given the fact that the first in the list is selected (here is one of the point where optimisation is possible namely by using another selection function); linear means that the resolution rule is followed. In prolog the definition of a definite sentence is a sentence that has exactly one positive literal in each clause and the unification is done with this literal. In the N3-database rules have exactly one “positive block” which is the consequent and facts always are a positive block.

Following resolution strategies are respected by an SLD-engine:

· depth first: each alternative is investigated until a unification failure occurs or until a solution is found. The alternative to depth first is breadth first.

· set of support: at least one parent clause must be from the negation of the goal or one of the “descendents” of such a goal clause. This is a complete procedure that gives a goal directed character to the search.

· unit resolution: at least one parent clause must be a “unit clause” i.e. a clause containing a single literal. This is not generally complete, but complete for Horn clauses. Is this complete for N3?

· input resolution: at least one parent comes from the set of original clauses (from the axioms and the negation of the goals). This is not complete in general but complete for Horn clause KB's.Is this complete for N3 KB’s?.

· linear resolution: the general resolution rule is followed.

· ordered resolution: this is the way prolog operates; the clauses are treated from the first to the last and each single clause is unified from left to right.

The data structure of N3Engine:

The module works internally with an XML-tree.

Here follows an overview of the important functions of N3Engine:

Main function
searchProof(filename1, filename2): read a parsed axiom-file filename1, read a parsed lemma-file filename2, execute the refutation algorithm and display the result.

e.g. searchProof “authen.axiom.n3” “authen.lemma.n3”

The resolution engine

proof(database, query): a proof has as input the database of clauses and a query. The output is a list of substitutions (one for each found solution) and an XMLTree that contains information about the resolution process if the verbose flag is set.

The query is the initial goallist.

solve(trace, substitution, goallist, stack, integer, database): search a solution for the goal at the top of the goallist. All triples who unify with this goal are added to the alternative list. For a rule the antecedents of a matched rule are added to the goal list. When the goal list is empty and the stack is empty all solutions have been found; if the goallist is empty but not the stack then a backtrack will be done in search of further solutions.

If a goal fails then retrieve the last saved situation from the stack.

The iput integer counts the number of steps of the engine in view of limiting the maximal number of steps.

Output is a substitution and the trace XMLtree.

choose(trace, substitution, goallist, alternatives_list, stack, integer, database): choose an alternative. In this implementation add the first alternative to the goal list and save the others on the stack together with the last found substitution and the previous goal list. Then call again the solve function. If the list of alternatives is empty then backtrack to the last list. The integer has the same function as with solve.Returns a substitution and the trace XMLtree.

backtrack(trace, stack, integer, database): retrieve an alternative from the stack and call the function choose. If there is no alternative return an empty substitution and the trace XMLtree. The input integer is as higher.

getAlts(database, clause, substitution): get the list of matches of a tripleset with the heads in the database. This is the kernel of the resolution engine. The first parameter is the database; the second is the goal to unify; the third parameter is the current substitution.

Output is a list of alternatives consisting of pairs that contain a clause and a substitution: type Alt = (XMLTree, Subst), and an XMLTree that contains trace data.

PAGE
33

