Chapter 7. Existing software systems

7.1. Introduction

After discussing the characteristics of RDF inferencing it is time to review what exists already.

I make a difference between a query engine that just does querying on a RDF graph but does not handle rules and an inference engine that also handles rules.

In the literature this difference is not always so clear.

The complexity of an inference engine is a lot higher than a query engine. This is because rules create an extension of the original graph producing a closure graph (see chapter 5). In the course of a query this closure graph or part of it has to be reconstructed. This is not necessary in the case of a query engine.

Rules also suppose a logic base that is inherently more complex than the logic in the situation without rules. For a query engine only the simple principles of entailment on graphs are necessary (see chapter 5).

I will not discuss query engines as the main goal of this thesis is to discuss rules and inferencing.

RuleML is an important effort to define rules that are usable for the World Wide Web [GROSOP].

The Inference Web [MCGUINESS2003] is a recent realisation that defines a system for handling different inferencing engines on the Semantic Web.

7.2. Inference engines

7.2.1.Euler

Euler is the program made by Deroo [DEROO]. It does inferencing and also implements a great deal of OWL (Ontology Web Language).

The program reads one or more triple databases that are merged together and it also reads a query file. The merged databases are transformed into a linked structure (Java objects that point to other Java objects). The philosopy of Euler is thus graph oriented.

This structure is different from the structure of my engine. In my engine the graph is not described by a linked structure but by a collection of triples, a tripleset.

The internal mechanism of Euler is in accordance with the principles exposed in chapter 5.

Deroo also made a collection of test cases upon which I based myself for testing my engine.

7.2.2. CWM

CWM is the program of Berners-Lee.

It is based on forward reasoning.

CWM makes a difference between existential and universal variables[BERNERS]. N3Engine does not make that difference. It follows the syntaxis of Notation 3: log:forSome for existential variables, log:forAll for universal variables. As I explained in chapter 6 all variables in my engine are quantified in the sense: forAllThoseKnown. Blank or anonymous nodes are instantiated with a unique URI.

CWM makes a difference between ?a for a universal, local variable and _:a for an existential, global variable. N3Engine maintains the difference between local and global but not the quantification.

7.2.3. TRIPLE

TRIPLE is based on Horn logic and borrows many features from F-Logic [SINTEK].

TRIPLE is the successor of SiLRI.

7.3. RuleML

7.3.1. Introduction

RuleML is an effort to define a specification of rules for use in the World Wide Web.

7.3.2. Technical approach

The kernel of RuleML are datalog logic programs (see chapter 6) [GROSOF]. It is a declarative logic programming language with model-theoretic semantics. The logic is based on Horn logic.

It is a webized language: namespaces or defined as well as URI’s.

Inference engines are available.

There is a cooperation between the RuleML Iniative and the Java Rule Engines Effort.

7.4. The Inference Web

7.4.1. Introduction

The Inference Web was introduced by a series of recent articles [MCGUINESS2003].

When the Semantic Web develops it is to be expected that a variety of inference engines will be used on the web. A software system is needed to ensure the compatibility between these engines.

The inference web is a software system consisting of:

a web based registry containing details on information sources and reasoners called the Inference Web Registry.

1) an interface for entering information in the registry called the Inference Web Registrar.

2) a portable proof specification

3) an explanation browser.

7.4.2. Details

In the Inference Web Registry data about inference engines are stored. These data contain details about authoritative sources, ontologies, inference engines and inference rules. In the explanation of a proof every inference step should have a link to at least one inference engine.

1) The Web Registrar is an interface for entering information into the Inference Web Registry.

2) The portable proof specification is written in the language DAML+OIL. In the future it will be possible to use OWL. There are four major components of a portable proof:

a) inference rules

b) inference steps

c) well formed formulae

d) referenced ontologies

 These are the components of the inference process and thus produces the proof of the conlusion reached by the inferencing.

3) The explanation browser show a proof and permits to focus on details, ask additional information, etc…

7.4.3. Conclusion

I believe the Inference Web is a major and important step in the development of the Semantic Web. It has the potential of allowing a cooperation between different inference engines. It can play an important part in establishing trust by giving explanations about results obtained with inferencing.

7.5. Query engines

7.5.1. Introduction

RDFEngine uses rather simple query expressions: they are just subgraphs. Many RDF query engines exists that use much more sophisticated query languages. Many of these have been inspired by SQL [RQL]. Besides giving a subgraph as a query, many other extra features are often implemented. E.g. for queries that result in an answer containing mathematical values, certain boundaries can be imposed on the resulting query.

There are many RDF query engines. I will only discuss some of the most important.

7.5.2. DQL

DAML Query Language (DQL) is a formal language and protocol for a querying agent and an answering agent to use in conducting a query-answering dialogue using knowledge represented in DAML+Oil.

The DQL specification [DQL] contains some interesting notions:

a) variables in a query can be: must-bind, may-bind or don’t-bind. Must-bind variables must be bound to a resource. May-bind variables may be bound. Don’t-bind variables may not be bound.

b) The set of all answers to a query is called the response set. In general, answers will be delivered in group, each of which is called an answer bundle. An answer bundle contains a server continuation that is either a process handle that can be used to get the next answer bundle or a termination token indicating the end of the response.

7.5.3. RQL

RQL uses a SQL-like syntax for querying. Following features are worth mentioning:

a) RDF Schema is built-in. Class-instance relationships, classe/property subsumption, domain/range and such are adressed by specific language constructs [RQL]. This means that the query engine does inferencing. It will e.g. deduce all classes a resource belongs to by following the subclass relationships.

b) RQL has operators: comparison and logical operators.
c) RQL has set operations: union, intersection and difference.
An example:

select X, Y

from {X : cult:cubist } cult:paints {Y}

using namespace

 cult = http://www.icom.com/schema.rdf#
The query asks for the paintings of all painters who are cubists.

7.5.4. XQuery

XQuery is a programming language[BOTHNER]. Everything in XQuery is an expression which evaluates to a value. Some characteristics are:

1) The primitive data types in Xquery are the same as for XML Schema.

2) XQuery can represent XML values. Such values are: element, attribute, namespace, text, comment, processing-instruction and document.

3) XQuery expressions evaluate to sequences of simple values.

4) XQuery borrows path expressions from Xpath. A path expression indicates the location of a node in a XML tree.

5) Iterating over sequences is possible in XQuery (see the example).

6) It is possible to define functions in XQuery.

7) Everything reminds of functional programming.

Example:

for $c in customers

for $o in orders

where $c.cust_id=$o.cust_id and $o.part_id="xx"

return $c.name

This corresponds to following SQL statements:

select customers.name

from customers, orders

where customers.cust_id=orders.cust_id

 and orders.part_id="xx"

In Haskell this could be represented by following list comprehension:

[name c| c <- customers, o <- orders, cust_id c == cust_id1 o, part_id o == “xx”]

7.6. Swish

Swish is a software package that is intended to provide a framework for building programs in Haskell that perform inference on RDF data [KLYNE]. Where RDFEngine uses resolution backtracking for comparing graphs, Swish uses a graph matching algorithm described in [Carroll]. This algorithm is interesting because it represents an alternative general way, besides forwards and backwards reasoning, for building a RDF inference engine.

