Chapter 6. RDF, inferencing and logic.

6.1.The model mismatch

Note: In this chapter the notation used will be the usual notation for first order logic. 

When the necessity was felt to define rules as a layer above RDF and rdfs inspiration was sought in the beginning with first order logic (FOL) and more specifically with horn clauses.[SWAP, DECKER, RDFRULES]. Nevertheless the model theory of RDF is completely graph oriented. This creates a model mismatch where on the one hand a graph model and entailment on graphs is followed when using basic RDF, on the other hand FOL reasoning is followed when using inferencing. 

This raises the question: how do you translate between the two models or is this even possible?

Indeed, the semantics of the graph model and those of first order logic are not the same.

There are points of difference between the graph model of RDF and FOL:

1) RDF only uses the logic ‘and’ by way of the implicit conjunction of RDF triples. The logic layer adds the logic implication and variables. Negation and disjunction (or), where necessary, have to be implemented as properties of subjects. The implication as defined for RDF is usually not the same as the first order material implication.

2)  Is a FOL predicate the same as an RDF property? Is a predicate Triple(subject,property,object) really the same as a triple (subject,property, object)?

3) The quantifiers (forAll, forSome) are not really ‘existing’. A solution is a match of a query with the closure graph. The quantifier used is then:  ‘for_all_known_in_our_database’. The database can be an ad-hoc database that came to existence by a merge of several RDF-databases.

4) The logic as defined in the preceding chapter is not the same as FOL. This will be discussed more ddeply in the following. As an example lets take the implication: a ( b in FOL implies  (b ( (a in FOL. This is not true as far as the definition of rules in the preceding chapter is concerned:

(s1,p1,o1)implies(s2,p2,o2) does not imply (not(s2,p2,o2))implies (not(s1,p1,o1)). This not is not even defined!

I have made a model of RDF in FOL without however claiming the isomorphism of the translation. Others have done the same before [RDFRULES]. In this model RDF and the logic extension are both viewed in terms of FOL and the corresponding resolution theory.

I have constructed also a model of RDF and the logic layer with reasoning on graphs (chapter 5). Here the compatibility with the RDF model theory is certain. The model enabled me to proof some characteristics of the resolution process used for the Haskell engine, RDFEngine.
6.2.Modelling RDF in FOL
6.2.1. Introduction

RDF works with triples. A triple is composed of a subject, predicate and object. These items belong together and may not be separated. To model them in FOL a predicate Triple can be used :

Triple(subject, predicate, object)

Following the model theory [RDFM] there can be sets of triples that belong together. If t1, t2 and t3 are triples, a set of triples might be modelled as follows:

Tripleset(t1, t2, t3)

This is however not correct as the length of the set is variable; so a list must be used. 

There exist also anonymous subjects: these can be modelled by an existential variable:

( X: Triple(X, b, c) 

saying that there exists something with property b and value c. 

An existential elimination can also be applied putting some instance for the variable (existential elimination):

Triple(_ux, b, c)

6.2.2. The RDF data model

Now let's consider the RDF data model [RDFM]: fig. 6.1.

Note: for convenience Triple will be abbreviated T and TripleSet TS.

This datamodel gives the first order facts and rules as shown in fig. 6.2.

(a set is represented by rdfs:Class).

As subjects and objects are Resources they can be triples too (called “embedded triples”); predicates however cannot be triples because of rule 6. This can be used for an important optimization in the unification process. 

Reification of a triple {pred, sub, obj} [RDFM] of Statements is an element r of Resources representing the reified triple and the elements s1, s2, s3, and s4 of Statements such that :

The RDF data model

Point 1-4 describe the sets in the model :

1) There is a set called Resources. 

2) There is a set called Literals. 

3) There is a subset of Resources called Properties. 

4) There is a set called Statements, each element of which is a triple of the form 

{pred, sub, obj}

where pred is a property (member of Properties), sub is a resource (member of Resources), and obj is either a resource or a literal (member of Literals).(Note: this text will use the sequence {sub, pred, obj}).

The following points give extra properties:

5)RDF:type is a member of Properties.

6)RDF:Statement is a member of resources but not contained in Properties.

7)RDF:subject, RDF:predicate and RDF:object are in Properties.

Fig. 6.1.  The RDF data model.

The RDF data model in First Order Logic

1) T(rdf:Resources, rdf:type, rdfs:Class)

2) T(rdf:Literals, rdf:type, rdfs:Class)

3) T(rdf:Resources, rdfs:subClassOf,  rdf:Properties)

4) T(rdf:Statements, rdf:type, rdfs:Class)

    (s, sub, pred, obj: T(s, rdf:type, rdf:Statements) ( (Equal(s, Triple(sub, pred, obj)) ( T(pred, rdf:type, rdf:Property) ( T(sub, rdf:type, rdf:Resources) ( T(obj, rdf:type, rdf:Resources) ( T(obj, rdf:type, rdf:Literals)))

5) T(rdf:type, rdf:type, rdf:Property) Note the recursion here. 

6) T(rdf:Statement, rdf:type, rdf:Resources) 

    (T(rdf:Statement, rdf:type, rdf:Property)

7) T(rdf:subject, rdf:type, rdf:Property)

    T(rdf:predicate, rdf:type, rdf:Property)

    T(rdf:object, rdf:type, rdf:Property)

Fig. 6.2. The RDF data model in First Order Logic

s1: {RDF:predicate, r, pred} 
s2: {RDF:subject, r, subj} 
s3: {RDF:object, r, obj} 
s4: {RDF:type, r, RDF:Statement}

In FOL:

(r, sub, pred, obj: T(r, rdf:type, rdf:Resources) ( T(r, rdf :predicate, pred) ( T(r, rdf:subject, subj) ( T(r, rdf:subject, obj) -> T(r, Reification, T(sub, pred, obj))

The property ‘Reification’ is introduced here. 

As was said a set of triples has to be represented by a list:

If T(d,e,f), T(g,h,i) and T(a,b,c) are triples then the list of this triples is :

{:d :e :f. :g :h :i. :a :b :c} becomes:

TS(T(d, e, f),TS(T(g,h,i),TS(T(a,b,c))))

In prolog e.g. :

[T(d, e, f)|T(g, h, i)|T(a, b, c].

In Haskell this is better structured: 

type TripleSet =  [Triple]

tripleset =  [Triple(d, e, f), Triple(g, h, i), Triple(a, b, c)]

6.2.3. A problem with reification

Following the data model a node in the RDF graph can be a triple. Such a node can be serialised i.e. the triple representing the node is given a name and then represented separately by its name. 

Example: T(Lois,believes,T(Superman,capable,fly)). [Sabin]

This triple expresses a so called quotation. It is not the intention that such a triple is asserted i.e. considered to be true.

So, given the triple: T(Superman,identical,ClarkKent) it should not be infered:

T(Lois,believes,T(ClarkKent,capable,fly)).

The triple T(Lois,believes,T(Superman,capable,fly)). should be serialised as follows:

T(Lois,believes,t).

T(RDF:predicate, t, capable). 
T(RDF:subject, t, Superman). 
T(RDF:object, t, fly). 
T(RDF:type, t, RDF:Statement).

The reified triples do not belong to the same RDF graph as the triple:

T(Lois,believes,T(Superman,capable,fly)) as can easily be verified. 

The triple T(Superman,identical,ClarkKent) can not be unified with this reification.

The conclusion is that separate triples should not be unified with embedded triples i.e. with triples that represent a node in the RDF graph. The possibility of representing nodes by a triples or a tripleset enhances considerably the expressiveness of RDF as I have been able to conclude from some experiments. 

However the data model states:

RDF:Statement is a member of resources but not contained in Properties.

Strictly speaking then one triple can compose a node but not a tripleset. Nevertheless, I’m in favour of permitting a resource to be constituted by a tripleset.

Consider now the Notation3 statement:

:Lois :believes {:Superman :capable :fly}.

Now this can be interpreted in two ways (with a different semantic interpretation): 

1)  :Lois :believes :Superman.

:Superman :capable :fly.

Here however the ‘quoting’ aspect has vanished.

2) The second interpretation is by reification as above. 

I will take it that the second interpretation is the right one. 

6.2.4.Conclusion

The RDF data model can be reduced to a subset of first order logic. It is restricted to the use of a single predicate Triple and lists of triples. However this model says nothing about the graph structure of RDF.(See chapter 5).

For convenience in what follows lists will be represented between ‘[]’; variables will be identifiers prefixed with ?.

6.3.Unification and the RDF graph model

An RDF graph is a set of zero, one or more connected subgraphs. The elements of the graph are subjects, objects or bNodes (= anonymous subjects). The arcs between the nodes represent predicates. 

Suppose there is the following database:

TS[T(Jack, owner, dog),T(dog, name, “Pretty”), T(Jack, age, “45”)] 

And a query: TS(T(?who, owner, dog), T(dog, name, ?what))

If we represent the first subgraph of the database and the first query as follows:

T(Jack, owner, dog) ( T(dog, name, “Pretty) ( T(Jack, age, “45”)

and the query(here negated for the proof):

(T(?who, owner, dog) ( (T(dog, name, ?what)

Then by applying the rule of UR (Unit Resolution) to the query and the triples T(Jack, owner, dog) and T(dog, name, “Pretty) the result is the substitution: [(?who, Jack),(?what, “Pretty”)] .
Proof of this application: T(a) ( T(b) ( ((T(a) ( (T(b)) =

T(a) ( (T(b) ( (T(a)) ( (T(b) ( (T(b)) = T(a) ( (T(b) ( (T(a)) = False

This proof can be extended to any number of triples. This is in fact UR resolution with a third empty clause. 

In [WOS]: “Formally, UR-resolution, is that inference rule that applies to a set of clauses one of which must be a non-unit clause, the remaining must be unit clauses, and the result of successful application must be a unit clause. Furthermore, the nonunit clause must contain exactly one more literal than the number of (not necessarily distinct) unit clauses in the set to which UR-resolution is being applied.“

A query (goal) applied to a rule gives:

 (T(a) (T(b)) ( T(c) = ( T(a) ( ( T(b) (  T(c)

where the query will be : ( T(?c)
Here the application of binary resolution gives the new goal:

 ( T(a) ( ( T(b) and the substitution (?c, c).
In [WOS] :  “ Formally, binary resolution is that inference rule that takes two clauses, selects a literal in each of the same predicate but of opposite sign, and yields a clause providing that the two selected literals unify. The result of a successful application of binary resolution is obtained by applying the replacement that unification finds to the two clauses, deleting from each (only) the descendant of the selected literal, and taking the or of the remaining literals of the two clauses. “ 

This application does not produce a contradiction; it adds the clause                           ( T(a) ( ( T(b) to the goallist.

The logical implication is not part of RDF or RDFS. It will be part of a logic standard for the Semantic Web yet to be established.

This unification mechanism is classical FOL resolution. 

6.4.Embedded rules

Embedded rules should pose no problems. When a rule produces a rule it is added to the goallist. A rule in the goallist should be unified with a tripleset but not with another rule. 

An example of the use of embedded rules: 

Suppose a reasoning generates a triple T(outcome, =, X1) and depending on that value a rule must be generated: T(?X1,>,X2) ( T(?X1, = ,?X1/X3).
Hence the rule: (T(?X1,>,X2) ( T(?X1,=, X3)) ( T(outcome, =, ?X1). This rule generated in the set of support will then unify with clauses of the form : T(_,=,X3).
In fact a rule represents generally a relation: for each set of values for the variables in the antecedents there is a set of values for the consequent, while the consequent may contain (a) variable(s) not present in the antecedents. If the consequent does not contain variables different from those in the antecedents then the rule represents a function (from the domain of  triplesets to the domain of triplesets). 

6.5.Completeness and soundness of the engine

The algorithm used in the engine is a resolution algorithm. Solutions are searched by starting with the axiom file and the negation of the lemma(query). When a solution is found a constructive proof of the lemma has also been found in the form of a contradiction that follows from a certain number of traceable unification steps as defined by the theory for first order resolution. Thus the soundness of the engine can be concluded. 

In general completeness of a RDF engine is not necessary or even possible. It can be possible for subsets of RDF and, for certain applications, it might be necessary.  It is an engine for verification of proofs; no assurance can be given if a certain proof is refused about the validity of the proof. If it is accepted the garantuee is given of its correctness. 

The unification algorithm clearly is decidable as a consequence of the simple ternary structure of N3 triples. The unification algorithm in the module RDFUnify.hs can be seen as a proof of this.

6.6.RDFProlog

I have defined a prolog-like structure by the module RDFProlog.hs (for a sample see chapter 10. applications) where e.g. name(company,”Test”) is translated to the triple: (company,name,”Test”). This language is very similar to the language DATALOG that is used for a deductive access to relational databases [ALVES].

The alphabet of DATALOG is composed of three sets: VAR,CONST and PRED denoting respectively variables, constants and predicates. One notes the absence of functions. Also predicates are not nested.

In RDFProlog the general  format of a rule is:

predicate-1(subject-1,object-1),…, predicate-n(subject-n,object-n) :> 

predicate-q(subject-q,object-q), …,predicate-z(subject-z,object-z).

where all predicates,subjects and objects can be variables. 

The format of a fact is:

predicate-1(subject-1,object-1),…, predicate-n(subject-n,object-n).

where all predicates,subjects and objects can be variables.

This is a rule without antecedents.

Variables begin with capital letters.

All clauses are to be entered on one line. A line with a syntax error is neglected. This can be used to add comment.

The parser is taken from [JONES] with minor modifications.

6.7.From Horn clauses to RDF

6.7.1. Introduction

Doubts have often been uttered concerning the expressivity of RDF. An inference engine for the World Wide Web should have a certain degree of expressiveness because it can be expected, as shown in chapter one, that the degree of complexity of the applications could be high.

I will show in the next section that all Horn clauses can be transformed to RDF, prhaps with the execption of functions. This means that RDF has at least the same expressiveness as Horn clauses.

6.7.2. Elaboration

For Horn clauses I will use the Prolog syntax; for RDF I will use Notation 3. 

I will discuss this by giving examples that can be easily generalized.

0-ary predicates:


Prolog:
 Venus.


RDF:   
 [:Tx :Venus] or :Ty :Tx :Venus.

where :Ty and :Tx are created anonymous URI’s.

Unary predicates:


Prolog:
Name(“John”).

RDF:

[:Name “John”] or :Ty :Name “John”.
Binary predicates:


Prolog:
Author(book1, author1).

RDF:

:book1 :Author :author1.
Ternary and higher: 


Prolog:
Sum(a,b,c).

RDF:

:Ty :Sum1 :a.




:Ty :Sum2 :b.




:Ty :Sum3 :c.


where :Ty represents the sum. 

Embedded predicates: I will give an extensive example.

In Prolog: 

 
diff(plus(A,B),X,plus(DA,DB)) :- diff(A,X,DA), diff(B,X,DB).

          diff(5X,X,5).

          diff(3X,X,3).

and the query:


diff(plus(5X ,3X),X,Y).

The solution is: Y = 8. 

This can be put in RDF but the source is rather more verbose.
Comment is preceded by #.


This is really very verbose but... it can be automated and it does not necessarily have to be less efficient because special measures are possible for enhancing the efficiency due to the simplicity of the format. 

So the thing to do with embedded predicates is to externalize them i.e. to make a separate predicate. 

What remains are functions:


Prolog:

p(f(x),g).

RDF:


:Tx :f :x.





:Tx :p :g.
or first: replace p(f(x),g) with p(f,x,g) and then proceed as before.

Hayes in [RDFRULES] warns however that this way of replacing a function with a relation can cause problems when the specific aspects of a function are used i.e. when only one value is needed. 

6.8. Comparison with Prolog and Otter

6.8.1. Comparison of Prolog with RDFProlog

Differences between Prolog and RDFProlog are:

1) in RDFProlog more than one head is allowed to a clause:

     a,b :> c,d. This is not permitted in Prolog

2) predicates can be variables in RDFProlog:

     P(A,B),P(B,C) :> P(A,C).

     This is not permitted in Prolog.

These two differences are not very fundamental as anyhow using those features does not produce very good programs. Especially point 2 can very easily lead to combinatorial explosion.

The RDF Graph:

         {?y1 :diff1 ?A.


?y1 :diff2 ?X.


?y1 :diff3 ?DA.

# diff(A,X,DA)


?y2 :diff1 ?B.


?y2 :diff2 ?X.


?y2 :diff3 ?DB.

# diff(B,X,DB)


?y3 :plus1 ?A.


?y3 :plus2 ?B.

# plus(A,B)


?y4 :diff1 ?y3.


?y4 :diff2 ?X.

#diff(plus(A,B),X,


?y5 :plus1 ?DA.


?y5 :plus2 ?DB.}

# plus(DA,DB)


log:implies{


?y4 :diff3 ?y5.}.

# ,plus(DA,DB))  -- This was the rule part.


:T1 :diff1 :5X.

# here starts the data part


:T1 :diff2 :X.


:T1 :diff3 :5.

# diff(5X,X,5).


:T2 :diff1 :3X.



:T2 :diff2 :X.


:T2 :diff3 :3.

# diff(3X,X,3).


:T4 :plus1 :5X.


:T4 :plus2 :3X.

# plus(5X,3X).       


:T5 :diff1 :T4.


:T5 :diff2 :X.

# diff(T4,X,


:T6 :plus1 :5.


:T6 :plus2 :3.

# plus(5,3)

The query:


:T5 :diff3 ?w.

# ,Y))

The answer: 


:T5 :diff3 :T6.

Fig. 6.3. A differentiation in RDF. 

3) RDFProlog is 100% declarative. Prolog is not as the sequence of declarations has importance in Prolog.

4) RDFProlog does not have functions; it does not have nested predicates. I have shown above in 6.7. that all Horn clauses can be put into RDF and thus into RDFProlog.

5) RDFProlog can use global variables. These do not exist in Prolog. 

6.8.3. Otter

 Otter is a different story [WOS]. Differences are:

1) Otter is a full blown theorem prover: it uses a set of different strategies that can be influenced by the user as well as different resolution rules:hyperresolution, binary resolution, …. It also uses equality reasoning. 

2) Otter is a FOL reasoner. Contrary to RDFProlog it does not use constructive logic. It reduces expressions in FOL to conjunctive normal form .

3) Lists and other builtins are available in Otter.

6.9.Differences between RDF and FOL

6.9.1. Anonymous entities

Take the following declarations in First Order Logic (FOL):

( car: owns(John,car) ( brand(car,Ford)

( car:brand(car,Opel)

and the following RDF declarations:

(John,owns,car)

(car,brand,Ford)

(car,brand,Opel)

In RDF this really means that John owns a car that has two brands (see also the following chapter). This is the consequence of the graph model of RDF. A declaration as in FOL where the atom car is used for two brands is not possible in RDF. In RDF things have to be said a lot more explicitly:

(John,owns,Johns_car)

(Johns_car,is_a,car)

(car,has,car_brand)

(Ford,is_a,car_brand)

(Opel,is_a,car_brand)

(car_brand,is_a,brand)

This means that it is not possible to work with anonymous entities in RDF. 

On the other hand given the declaration:

( car:color(car,yellow)

it is not possible to say whether this is Johns car or not.

In RDF:

color(Johns_car,yellow)

So here it is necessary to add to the FOL declaration:

( car:color(car,yellow) ( owns(John,car).

6.9.2.‘not’ and ‘or’

Negation and disjunction are two notions that have a connection. If the disjunction is exclusive  then the statement:  a cube is red or yellow implies that, if the cube is red, it is not_yellow, if the cube  is yellow, it is not_red. 

If the disjunction is not exclusive  then the statement:  a cube is red or yellow implies that, if the cube is red, it might be not_yellow, if the cube  is yellow, it might be not_red. 

Negation by failure means that, if a fact cannot be proved, then the fact is assumed not to be true [ALVES]. In a closed world assumption this negation by failure is equal to the logical negation. In the internet an open world assumption is the rule and negation by failure should be simply translated as: not found. 

It is possible to define a not as a property. ( owner(John,Rolls) is  implemented as: not_owner(John,Rolls).

I call this negation by declaration. Contrary to negation by failure negation by declaration is monotone and corresponds to a FOL declaration. 

Suppose the FOL declarations:

(owner(car,X)( poor(X).

owner(car,X)(rich(X).

(owner(car,Guido).

and the query:

poor(Guido).

In RDFProlog  this becomes:

not_owner(car,X) :> poor(X).

owner(car,X) :> rich(X).

not_owner(car,Guido).

and the query:

poor(Guido).

The negation is here really tightly bound to the property. The same notation as for FOL could be used in RDFProlog with the condition that the negation is bound to the property. 

Now lets consider the following problem:

poor(X) :> not_owner(car,X).

rich(X) :> owner(car,X).

poor(Guido).

and the query:

owner(car,Guido).

My engine does not give an answer to this query. This is the same as the answer ‘don’t know’. A forward reasoning engine would find: not_owner(car,Guido), but this too is not an answer. However when the query is: not_owner(car,Guido) the answer is ‘yes’. So the response really is: not_owner(car,Guido). So, when a query fails, the engine should then try the negation of the query. When that fails also, the answer is really: ‘don’t know’.

This implies a tri-valued logic: a query is true i.e. a solution can be constructed, a query is false i.e. a solution to the negation of the query can be constructed or the answer to a query is just: I don’t know. 

The same procedure can be followed with an or. I call this or by declaration.

Take the following FOL declaration: color(yellow) (  color(blue).

With or by declaration this becomes:

color(yellow_or_blue). 

color(yellow),color(not_blue) ( color(yellow_or_blue).

color(not_yellow),color(blue) ( color(yellow_or_blue).

color(yellow),color(blue) ( color(yellow_or_blue).
Note that a declarative not must be used and that three rules have to be added. An example of an implementation of these features can be found in chapter 10, the example of the Alpine Sports Club.

This way of implementing a disjunction can be generalized. As an example take an Alpine club. Every member of the club is or a skier, or a climber. This is put as follows in RDFProlog:

property(skier).

property(climber).

class(member).

subPropertyOf(sports,skier).

subPropertyOf(sports,climber).

type(sports,or_property).

climber(John).

member(X) :> sports(X).

subPropertyOf(P1,P),type(P1,or_property),P(X) :> P1(X).

The first rule says: if X is a member then X has the property sports. 

The second rule says: if a property P1 is an or_property  and P is a subPropertyOf P1 and X has the property P then X also has the property P1. 

The query: sports(John) will be answered positively. 

The implementation of the disjunction is based on the creation of a higher category which is really the same as is done in FOL:

(x:skier(X) ( climber(X),

only in FOL  the higher category remains anonymous. 

A conjunction can be implemented in the same way. This is not necessary as conjunction is implicit in RDF.

The disjunction could also be implemented using a builtin e.g.:

member(club,X) :> or(X,list(skier,climber))

Here the predicate or has to be interpreted by the inference engine, that needs also a buitlin list predicate. The engine should then verify whether X is a skier or a climber or both. 

6.9.3.Proposition

I propose to extend RDF with a negation and a disjunction in a constructive way:

Syntactically the negation is represented by a not predicate in front of a predicate in RDFProlog: 

not(a( b, c)).

and in Notation 3 by a not in front of a triple:

not{:a :b :c.}.

Semantically this negation is tied to the property and is identical to the creation of an extra property not_b that has the meaning of the negation of b. Such a triple is only true when it exists or can be deduced by rules.

Syntactically the disjunction is implemented with a special ‘builtin’ predicate or.

In RDFProlog if the or is applied to the subject:

p(or(a,b),c).

or to the object:

p(a,or(b,c)).

or to the predicate:

or(p,p1)(a,b).

and in Notation 3:

{:a :p or(:b,:c)}.

In RDFProlog this can be used in place of the subject or object of a triple; in Notation 3 in place of subject, property or object.

Semantically in RDFProlog the construction p(a,or(b,c))  is true if there exists a  triple p(a,b) or there exists a triple p(a,c).

Semantically in Notation 3 the construction {:a :p or(:b,:c)}. is true when there  exists a triple {:a :p :b} or there exists a triple {:a :p :c}.

It is my opinion that these extensions will greatly simplify the translation of logical problems to RDF while absolutely not modifying the data model of RDF. 

I also propose to treat negation and disjunction as properties. For negation this is easy to understand: a thing that is not yellow has the property not_yellow. For disjuntion this can be understood as follows: a cube is yellow or black. The set of cubes however has the property yellow_or_black. In any case a property is something which has to be declared. So a negation and disjunction only exist when they are declared. 

6.10.Logical implication

6.10.1.Introduction

Implication might seem basic and simple; in fact there is a lot to say about. Different interpretations of implication are possible.

6.10.2.RDF and implication

Material implication is implication in the classic sense of First Order Logic. In this semantic interpretation of implication the statement ‘If dogs are reptiles, then the moon is spherical’ has the value ‘true’. There has been a lot of criticism about such interpretation. The critic concerns the fact that the premiss has no connection whatsoever with the consequent. This is not all. In the statement ‘If the world is round then computer scientists are good people’ both the antecedent and the consequent are, of course, known to be true, so the statement is true. But there is no connection whatsoever between premiss and consequent. 

In RDF I can write:

(world,a,round_thing) implies (computer_scientists,a,good_people).

This is good, but I have to write it in my own namespace, let’s say: namespace = GNaudts. Other people on the World Wide Web might judge: 

Do not trust what this guy Naudts puts on his web site. 

So the statement is true but…

Anyhow, antecedent and consequent do have to be valid triples i.e. the URI’s constituting the subject, property and object of the triples do have to exist. There must be a real and existing namespace on the World Wide Web where those triples can be found. If e.g. the consequent generates a non-existing namespace then it is invalid. It is possible to say that invalid is equal to false,  but an invalid triple will be just ignored. An invalid statement in FOL i.e. a statement that is false will not be ignored. 

From all this it can be concluded that the Semantic Web will see a kind of process of natural selection. Some sites that are not trustworthy will tend to dissappear or be ignored while other sites with high value will survive and do well. It is in this selection that trust will play a fundamental role, so much that I dare say: without trust systems, no Semantic Web. 

Strict implication  or  entailment : if p( q then, necessarily, if p is true, q must be true. Given the rule (world,a,round_thing) implies (computer_scientists, a,good_people), if the triple (world,a,round_thing)  exists then, during the closure process the triple (computer_scientists, a,good_people) will actually be added to the closure graph. So, the triple exists then, but is it true? This depends on the person or system who looks at it and his trust system. 

If the definition of rules given in chapter 5 is considered as a  modus ponens then it does not entail the corresponding modus tollens. In classic notation: a( b does not entail (b ( (a. If a constructive negation as proposed before is accepted, then this deduction of modus tollens from modus ponens could perhaps be accepted. 

6.10.3.Conclusion

The implication defined in chapter 6 should be considered a  strict implication but, given trust systems, its truth value will depend on the trust system. A certain trust system might say that this triple is ‘true’, it might say that it is ‘false’ or it might say that it has a truth value of ‘70%’. 

6.11. Paraconsistent logic

The logic exposed in the section 6.9. shows characteristics of paraconsistent logics [STANDARDP].

Most paraconsistent logics can be defined in terms of a semantics which allows both A and (A to hold in an interpretation. The consequence of this is that ECQ fails. ECQ or ex contradictione quodlibet means that anything follows from a contradiction. An example of a contradiction in RDF is: 

(pinguin,a,flying_bird) and (pinguin,a,non_flying_bird).
Clearly, RDF is paraconsistent in this aspect. ECQ does not hold, which is a good feature. Contradictions can exist without them leading to whatever conclusion. This poses then, of course, the problem of their detection. 

In many paraconsistent systems the Disjunctive Syllogism fails also. The Disjunctive Syllogism is defined as the inference rule:

{A, (A ( B} ( B

(A ( B  is equivalent with A( B.

This Disjunctive Syllogism does hold for the system proposed in this thesis. It is to be noted that given A and A( B that it must be possible to construct B i.e. produce a valid triple.

6.12. RDF and constructive logic

RDF is more ‘constructive’ than FOL. Resources have to exist and receive a name. Though a resource can be anonymous in theory, in practical inferencing it is necessary to give it an anonymous name. 

A negation cannot just be declared; it needs to receive a name. Saying that something is not yellow amounts to saying that it has the property not_yellow.

The set of all things that have either the property yellow or blue or both needs to be declared in a superset that has a name.

For a proof of A ( (A either A has to be proved or (A has to be proved (e.g. an object is yellow or not_yellow only if this has been declared).   

This is the consequence of the fact that in the RDF graph everything is designated by a URI. 

The BHK-interpretation of constructive logic states:

(Brouwer, Heyting, Kolmogorov) [STANDARD]

a) A proof of A and B is given by presenting a proof of A and a proof of B.

b) A proof of A or B is given by presenting either a proof of A or a proof of B or both.

c) A proof of A ( B is a procedure which permits us to transform a proof of A into a proof of B. By the closure procedure described in chapter 5 implication is really constructive because it is defined as a construction: add the consequents of the rule to the graph!

d) The constant false has no proof.

If by proof of A is understood that A is a valid triple (the URI’s of the triple are existing), then RDF as described above follows the BHK interpretation.  Item c follows from the definition of a rule as the replacement of a subgraph defined by the antecedents by a subgraph defined by the consequents. The constant false does not exist in RDF. 

Because of the way a solution to a query is described in this thesis (chapter 5) as a subgraph of a closure graph, the logic is by definition constructive. The triples constituting the solution have to be constructed, be it by forward or backwards reasoning. The triples of the solution do have to exist. This is different from FOL where a statement can be true of false, but the elements of the statement do not necessarily need to exist. 

6.13. The Semantic Web and logic

One of the main questions to consider when speaking about logic and the Semantic Web is the logical difference between an open world and  a closed world. 

In a closed world it is assumed that everything is known. A query engine for a database e.g. can assume that all knowledge is in the database. Prolog also makes this assumption. When a query cannot be answered Prolog responds: “No”, where it could also say: ”I don’t know”.

In the world of the internet it is not generally possible to assume that all facts are known. Many data collections or web pages are made with the assumption that the user knows the data are not complete. 

Thus collections of data are considered to be open. There are some fundamental implications of this fact:

1) It is impossible to take the complement of a collection as: a) the limits of the collection are not known and b) the limits of the universe of discourse are not known. 

2) Negation can only be applied to known elements. It is not possible to speak of all resources that are not yellow. It is possible to say that resource x is not yellow or that all elements of set y are not yellow.

3) The universal quantifier does not exist. It is impossible to say : for all elements in a set or in the universe as the limits of those entities are not known. The existential quantifier, for some, really means :  for all those that are known. 
4) Anonymous resources cannot be used in reasoning. Indeed, in RDF it is possible to declare blank nodes but when reasoning these have to be instantiated by a ‘created URI’.  

5) The disjunction must be constructive. A proof of a or b is a proof of a, a proof of  b or a proof of a and a proof of b. In a closed world it can always be determined whether a or b is true.

This constructive attitude can be extended to mathematics. The natural numbers, reel numbers, etc… are considered to be open sets. As such they do not have cardinal numbers. What should be the cardinal number of an open set?

If a set of natural numbers is given and the complement is taken, then the only thing that can be said is that a certain element that is not in the set belongs to the complement. Thus only known elements can be in the complement and the complement is an open set. 

The notion ‘all sets’ exists; the notion ‘set of all sets’ exists; however it is not possible to construct this set so constructively the set of all sets does not exist, neither does the Russell paradox.

This is no attack on classic logic but the goal is to make a logic theory that can be used by computers.

6.14.OWL-Lite and logic

6.14.1.Introduction

OWL-Lite is the lightweight version of OWL, the Ontology Web Language. I will show in this section that, or OWL-Lite must be implemented natively, or a negation and an equality is needed for the implementation in RDF with a constructive implication. I will investigate how OWL-Lite can be interpreted constructively. 

I will only discuss OWL concepts that are relevant for this chapter.

6.14.2.Elaboration

Note: the concepts of RDF and rdfs form a part of OWL. 

rdfs:domain: a statement (p,rdfs:domain,c) means that when property p is used, then the subject must belong to class c.

Whenever property p is used a check has to be done to see if  the subject of the triple with property p really belongs to class c. Constructively, only subjects that are declared to belong to class c or deduced to belong to, will indeed belong to class c. There is no obligation to declare a class for a subject. If no class is declared, the class of the subject is rdf:Resource. The consequence is, that though a subject might be of class c but is not declared to belong to the class, then the property  p can not apply to this subject.

rdfs:range: a statement (p,rdfs:range,c) means that when property p is used, then the object must belong to class c. The same remarks as for rdfs:domain are valid.

owl:disjointWith: applies to sets of type rdfs:class. (c1,owl:disjointWith,c2) means that, if r1 is an element of c1 then it is not an element of c2. When there is no not, it is not possible to declare r1( c2. However, if both a declaration r1( c1 and r1( c2 is given, an inconsistency should be declared. 

It must be reminded that in an open world the boundaries of c1 and c2 are not known. It is possible to check the property for a given state of the database. However during the reasoning process, due to the use of rules, the number of elements in each class can change. In forward reasoning it is possible to assess after each step though the efficiency of such processes might be very low. In backwards reasoning tables have to be kept and updated with every step. When backtracking elements have to be added or deleted from the tables. 

It is possible to declare a predicate elementOf  and a predicate notElementOf and then make a rule:

{(r1,elementOf,c1)}implies{(r1,notElementOf,c2)}

and a rule:

{(r1,elementOf,c1),(r1,elementOf,c2)}implies{(this, a, owl:inconsistency)}

owl:complementOf: if (c1,owl:complementOf,c2) then class c1 is the complement of class c2. In an open world there is no difference between this and owl:disjointWith because it is impossible to take the complement in a universum that is not closed. 

6.15.The World Wide Web and neural networks

It is possible to view the WWW as a neural network. Each HTTP server represents a node in the network. A node that gets much queries is reinforced i.e. it gets a higher place in search robots, it will receive more trust either unformally through higher esteem either formally in an implemented trust system, more links will refer to it. 

On the other hand a node that has low trust or attention will be weakened. Eventually hardly anyone will consult it. This is comparable to neural cells where some synapses are reinforced and others are weakened. 

6.16.RDF and modal logic

6.16.1.Introduction

Following  [BENTHEM, STANFORDM] a model of possible worlds M = <W,R,V> for modal propositional logic consists of:

a) a non-empty set W of possible worlds

b) a binary relation of accessibility R between possible worlds in W.

c) a valuation V that gives, in every possible world, a value Vw(p) to each proposition letter p. 

This model can be used with adaptation for the World Wide Web in two ways. A possible world is then equal to a XML namespace.

1) for the temporal change between two states of an XML namespace

2) for the comparison of two different namespaces

This model can also be used to model trust. 

6.16.2.Elaboration

Be nst1 the state of a namespace at time t1 and nst2  the state of the namespace at time t2. 

Then the relation between nst1  and nst2  is expressed as R(nst1,nst2)
When changing the state of a namespace inconsistencies may be introduced between one state and the next. If this is the case one way or another users of this namespace should be capable of detecting this. Heflin has a lot to say about this kind of compatibilities between ontologies [HEFLIN]. 

If ns1 and ns2 are namespaces there is a non-symmetrical trust relation  between the namespaces.

R(ns1,ns2,t1)  is the trust that ns1 has in ns2  and  t1  is the trust factor. 

R(ns2,ns1,t2)  is the trust that ns2 has in ns1  and  t2  is the trust factor.

The truth definition for a modal trust logic is then (adapted following [BENTHEM]): Note: VM,w(p) = the valuation following model M of proposition p in world w.

a) VM,w(p) = Vw(p) for all proposition letters p.
b) VM,w ((() = 1 ( VM,w(() : This will only be applicable when a negation is introduced in RDF. This could be applicable for certain OWL concepts. 

c) VM,w(((() = 1 ( VM,w(() = 1 and VM,w(() = 1 : this is just the conjunction of statements in RDF.

d) VM,w((() = 1 ( for every w’ ( W: if Rww’ then VM,w(() = 1
This means that a formula should be valid in all worlds. This is not applicable for the World Wide Web as all worlds are not known.

e) VM,w,t((() = 1 ( there is a  w’ ( W such that Rww’ and trust(VM,w’(() = 1) >t : this means that (( (possible () is true if it is true in some world and the trust of this ‘truth’ is greater than the trust factor.

Point e is clearly the fundamental novelty for the World Wide Web interpretation of modal logic. 

In a world  w  a triple t  is true when it is true in w or any other world w’ taking into account the trust factor.  

This model can be used also to model neural networks. A neuron is a cell that has one dendrite and many axons. The axons of one cell connect to the dendrites of other cells. An axon fires when a certain threshold factor is surpassed. This factor is to be compared with the trust factor of above and each axon-dendrite synaps is a possible world. Possible worlds in this model evidently are grouped following the fact whether the synapses belong to the same neuron or not. This gives a two-layered modal logic. When a certain threshold of activation of the dendrites is reached a signal is sent to the axons that will fire following their proper threshold. Well, at least, this is a possible odel for neurons. I will not pretend that this is what happens in ‘real’ neurons. The interest here is only in the possibilities for modelling aspects of the Semantic Web. 

Certain properties about implication can be deduced or negated for example:

((p(q) ( ((p ((q) meaning :

If p(q is true in a world does not entail that p is true in a world and that q is true in a world.

Normally the property of transitivity will be valid between trusted worlds:

(p ( ( (p

(p in world w1 means that p is trusted in a connected world w2.

( (p in world w1 means that p is trusted in a world w3 that is connected to w2.

Trusted worlds are all worlds for which the accumulation of trust factors f(t1,t2,…,tn) is not lower than a certain threshold value. 

6.17. Logic and context

Take the logic statements in first order logic:

(x(y:man(x) & woman(y) & loves(x,y)

(x(y:man(x) & woman(y) & loves(x,y)

The first means: ‘all men love a woman’ and the second: ‘there is at least one man who loves all women’. Clearly this is not the same meaning. However, constructively (as implemented in my engine) they are the same and just represent all couples (x,y) for which a fact: man(x) & woman(y) & loves(x,y) can be found in the RDF graph. In order to maintain the meaning as above it should be indicated that reasoning is in a closed world. This is the same as stating that man and  woman are closed sets, i.e. it is accepted that all members of the set are (potentially) known. 

It is interesting to look at these statements as scientific hypotheses. A scientific hypothesis is seen in the sense of Popper [POPPER]. A hypothesis is not something which is true but of which the truth can be denied. This means it is possible to find a negation of the hypothesis. 

‘All men love a woman’ is a scientific hypothesis because there might be found a man who does not love a woman. ‘There exists at least a man who loves all women’ is not a scientific hypothesis because it is impossible to find a denial of this statement. This is true in an open world however. If the set of man was closed it would be known for all men whether they love a woman or not. This means that scientific hypotheses are working in an open world.

I only mention Popper here to show that the truth of a statement can depend on the context.

It is possible to define a logic for the World Wide Web(open world), it is possible to define a logic for a database application(closed world), it is possible to define a logic for a philosophical thesis (perhaps an epistemic logic),… What I want to say is: a logic should be defined within a certain context. 

So I want to define a logic in the context ‘reference inference engine’ together with a certain RDF dataset and RDF ruleset. Depending on the application this context can be further refined. One context could then be called the basic RDF logic context. In this context the logic is constructive with special rules regarding sets. Thus the Semantic Web needs a system of context dependent logic. 

It is then possible to define for the basic context:

A closed set is a set for which it is possible to enumerate all elements of the set in a finite time and within the context: the engine,the facts and the rules. An open set is the a set that is not closed. With this definition then e.g. the set of natural numbers is not closed. In another, more mathematical context, the set of natural numbers might be considered closed. 

Edmonds gives some philosophical background about context and truth [EDMONDS]. He adheres to what he calls ‘strong contextualism’ meaning that every logic statement has to be interpreted within a certain context. He thus denies that there are absolute truths. 

6.18. Monotonicity

Another aspect of logics that is very important for the Semantic Web is the question whether the logic should be monotonic or  nonmonotonic. 
Under monotonicity in regard to RDF I understand that, whenever a query relative to an RDF file has a definite answer and another RDF file is merged with the first one , the answer to the original query will still be obtained after the merge. As shown before  there might be some extra answers and some of those might be contradictory with the first answer. However this contradiction will clearly show. 

If the system is nonmonotonic some answers might dissappear; other that are contrdictory with the first might appear. All this would be very confusing.

Here follows an example problem where ,apparently, it is impossible to get a solution and maintain the monotonicity.

I state the problem with an example.

A series of triples:

(item1,price,price1),(item2,price,price2), etc…

is given and a query is done asking for the lowest price.

Then some more triples are added:

(item6,price,price6),(item7,price,price7), etc…

and again the query is done asking for the lowest price.

Of course, the answer can now be different from the first answer. Monotonicity as I defined it in chapter 5 would require the first answer to remain in the set of solutions. This obviously is not the case.

Clearly however, a Semantic Web that is not able to perform an operation like the above, cannot be sactisfactory. 

The solution

I will give an encoding of the example above in RDFProlog and then discuss this further.

List are encoded with rdf:first  for indicating the head of a list and rdf:rest for indicating the rest of the list. The end of a list is encoded with rdf:nil.

I suppose the prices have already been entered in a list what is in any case necessary.

rdf:first(l1,”15”).

rdf:rest(l1,l2).

rdf:first(l2,”10”).

rdf:rest(l2,rdf:nil).

rdf:first(L,X), rdf:rest(L,rdf:nil) :> lowest(L,X).

rdf:first(L,X), rdf:rest(L,L1), lowest(L1,X1), lesser(X,X1) :> lowest(L,X).

rdf:first(L,X), rdf:rest(L,L1), lowest(L1,X1), lesser(X1,X) :> lowest(L,X1).

The query is:

lowest(l1,X).

giving as a result:

lowest(l1,”10”).


Let’s add two prices to the list. The list then becomes:

rdf:first(l1,”15”).

rdf:rest(l1,l2).

rdf:first(l2,”10”).

rdf:rest(l2,l3).

rdf:first(l3,”7”).

rdf:rest(l3,l4).

rdf:first(l4,”23”).

rdf:rest(l4,rdf:nil).

The query will no give as a result:

lowest(l1,”7”).

Monotonicity is not respected. However, from the first RDF graph a triple has disappeared:

rdf:rest(l2,rdf:nil).

So the conditions for monotonicity as I defined in chapter 5 are not respected either. Some operations apparently cannot be executed while at the same time respecting monotonicity. Especially, monotonicity cannot be expected when a query is repeated on a graph that does not contain the first graph as a subgraph. Clearly, however, these operations might be necessary. A check is necessary in every case to see whether this breaking of monotonicity is permitted.

6.19. Learning

Though this is perhaps not directly related to logic, it is interesting to say something about learning. Especially the Soar project [LEHMAN] gives useful ideas concerning this subject. Learning in itself is not difficult. An inference engine can keep all results it obtains. However this will lead to an avalanche of results that are not always very usefull. Besides that, the learning has to be done in a structured way, so that what is learned can be effectively used. 

An important question is when to learn. In Soar learning occurs when there is an impasse in the reasoning process. The same attitude can be taken in the Semantic Web. Inconsistencies that arise are a special kind of impasse. 

In three ways learning can take place when confronted with an inconsistency:

1) the query can be directed to other agents

2) a search can be done in a history file in the hope to find similar situations

3) a question can be asked at the human user.

In all ways the result of the learning will be added to the RDF graph, possibly in the form of rules. 

6.20. Conclusion

As was shown above the logic of RDF is compatible with the BHK logic. It defines a kind of constructive logic. I argue that this logic must be the basic logic of the Semantic Web. Basic Semantic Web inference engines should use a logic that is both constructive, based on an open world assumption,  and monotonic. 

If, in some applications, another logic is needed, this should be clearly indicated in the RDF datastream. In this way basic engines will ignore these datastreams.
