An inference engine for the semantic web.

Theorem provers an overview

=======================

1.Introduction

As this thesis is about automatic deduction using RDF declarations and rules, it is useful to give an overview of the systems of automated reasoning that exist. In this connection the terms machinal reasoning and, in a more restricted sense, theorem provers, are also relevant.

First there follows an overview of the varying (logical) theoretical basises and the implementation algorithms build upon them. In the second place an overview is given of practical implementations of the algoritms. This is by no means meant to be exhaustive.

Kinds of theorem provers :

 [DONALD]

 Three different kinds of provers can be discerned:

· those that want to mimic the human thought processes

· those that do not care about human thought, but try to make optimum use of the machine

· those that require human interaction.

There are domain specific and general theorem provers. Provers might be specialised in one mechanism e.g. resolution or they might use a variety of mechanisms.

 There are proof checkers i.e. programs that control the validity of a proof and proof generators.In the semantic web an inference engine will not serve to generate proofs but to check proofs; those proofs must be in a format that can be easily transported over the net.

2. Overview of principles

2.1. General remarks

 Automated reasoning is an important domain of computer science. The number of applications is constantly growing.

* proving of theorems in mathematics

* reasoning of intelligent agents

* natural language understanding

* mechanical verification of programs

* hardware verifications (also chips design)

* planning

* and ... whatever problem that can be logically specified (a lot!!)

Hilbert-style calculi have been trditionally used to characterize logic systems. These calculi usually consist of a few axiom schemata and a small number of rules that typically include modus ponens and the rule of substitution. [STANFORD]

2.2 Reasoning using resolution techniques: see the chapter on resolution.

2.3. Sequent deduction

[STANFORD] [VAN BENTHEM]

Gentzen analysed the proof-construction process and then devised two deduction calculi for classical logic: the natural deduction calculus (NK) and the sequent calculus (LK).

Sequents are expressions of the form A (B where both A and B are sets of formulas. An interpretation I satisfies the sequent iff either I does not entail a (for soma a in A) or I entails b (for some b in B). It follows then that proof trees in LK are actually refutation proofs like resolution.

A reasoning program, in order to use LK must actually construct a proof tree. The difficulties are:

1) LK does not specify the order in which the rules must be applied in the construction of a proof tree.

2) The premises in the rule ((and ((rules inherit the quantificational formula to which the rule is applied, meaning that the rules can be applied repeatedly to the same formula sending the proof search into an endless loop.

3) LK does not indicate which formula must be selected newt in the application of a rule.

4) The quantifier rules provide no indication as to what terms or free variables must be used in their deployment.

5) The application of a quantifier rule can lead into an infinitely long tree branch because the proper term to be used in the instantiation never gets chosen.

Axiom sequents in LK are valid and the conslusion of a rule is valid iff its premises are. This fact allows us to apply the LK rules in either direction, forwards from axioms to conslusion, or backwards from conclusion to axioms. Also with the exception of the cut rule, all the rules’premises are subformulas of their respective conclusions. For the purposes of automated deduction this is a significant fact and we would want to dispense with the cut rule; fortunately, the cut-free version of LK preserves its refutation completeness(Gentzen 1935). These results provide a strong case for constructing proof trees in backward fashion. Another reason for working backwards is that the truth-functional fragment of cut-free LK is confluent in the sense that the order in which the non-quantifier rules are applied is irrelevant.

Another form of LK is analytic tableaux.

2.4. Natural deduction

 [STANFORD] [VAN BENTHEM]

In natural deduction (NK) deductions are made from premisses by ‘introduction’ and ‘elimination’ rules.

Some of the objections for LK can be applied to NK.

1) NK does not specify in which order the rules must be applied in the construction of a proof.

2) NK does not indicate which formula must be selected next in the application of a rule.

3) The quantifier rules provide no indication as to what terms or free variables must be used in their deployment.

4) The application of a quantifier rule can lead into an infinitely long tree branch because the proper term to be used in the instantiation never gets chosen.

As in LK a backward chaining strategy is better focused.

Fortunately, NK enjoys the subformula property in the sense that each formula entering into a natural deduction proof can be restricted to being a subformula of (((({(}, where (is the set of auxiliary assumptions made by the not-elimination rule. By exploiting the subformula property a natural dedcution automated theorem prover can drastically reduce its search space and bring the backward application of the elimination rules under control. Further gains can be realized if one is willing to restrict the scope of NK’s logic to its intuistionistic fragment where every proof has a normal form in the sense that no formula is obtained by an introduction rule and then is eliminated by an elimination rule.

2.5. The matrix connection method

[STANFORD] Suppose we want to show that from (PvQ)&(P (R)&(Q(R) follows R. To the set of formulas we add ~R and we try to find a contradiction. First this is put in the conjuntive normal form:

(PvQ)&(~PvR)&(=QvR)&(~R).Then we represent this formula as a matrix as follows:

 P Q

 ~P R

 ~Q R

 ~R

The idea now is to explore all the possible vertical paths running through this matrix. Paths that contain two complementary literals are contradictory and do not have to be pursued anymore. In fact in the above matrix all paths are complementary which proves the lemma. The method can be extended for predicate logic ; variations have been implemented for higher order logic.

2.6 Term rewriting

Equality can be defined as a predicate. In /swap/log the sign = is used for defining equality e.g. :Fred = :human. The sign is an abbreviation for "http://www.daml.org/2001/03/daml+oil/equivalent". Whether it is useful for the semantic web or not, a set of rewrite rules for N3 (or RDF) should be interesting.

Here are some elementary considerations (after [DICK]).

A rewrite rule, written E ==> E', is an equation which is used in only one direction. If none of a set of rewrite rules apply to an expression, E, then E is said to be in normal form with respect to that set.

A rewrite system is said to be finitely terminating or noetherian if there are no infinite rewriting sequences E ==> E' ==> E'' ==> ...

We define an ordering on the terms of a rewrite rule where we want the right term to be more simpler than the left, indicated by E >> E'. When E >> E' then we should also have: (E) >> (E') for a substitution  Then we can say that the rewrite system is finitely terminating if and only if there is no infinite sequence E >> E' >> E'' ... We then speak of a well-founded ordering. An ordering on terms is said to be stable or compatible with term structure if E >> E' implies that

i) (E) >> (E') for all substitutions 
ii) f(...E...) >> f(...E..) for all contexts f(...)

If unique termination goes together with finite termination then every expression has just one normal form. If an expression c leads always to the same normal form regardless of the applied rewrire rules and their sequence then the set of rules has the propertry of confluence. A rewrite system that is both confluent and noetherian is said to be canonical. In essence, the Knuth-Bendix algorithm is a method of adding new rules to a noetherian rewrite system to make ik canonical (and thus confluent).

A critical expression is a most complex expression that can be rewritten in two different ways. For an expression to be rewritten in two different ways, there must be two rules that apply to it (or one rule that applies in two different ways).Thus, a critical expression must contain two occurrences of left-hand sides of rewrite rules. Unification is the process of finding the most general common instance of two expressions. The unification of the left-hand sides of two rules would therefore give us a critical expression to which both rules would be applicable. Simple unification, however, is not sufficient to find all critical expressions, because a rule may be applied to any part of an expression, not just the whole of it. For this reason, we must unify the left-hand side of each rule with all possible sub-expressions of left-hand sides. This process is called superposition. So when we want to generate a proof we can generate critical expressions till eventually we find the proof.

Superposition yields a finite set of most general critical expressions.

The Knuth_Bendix completion algorithm for obtaining a canonical set (confluent and noetherian) of rewrite rules:

(Initially, the axiom set contains the initial axioms, and the rule set is empty)

A while the axiom set is not empty do
B begin Select and remove an axiom from the axiom set;

C Normalise the axiom

D if the axiom is not of the form x= x then

 Begin

E order the axiom using the simplification ordering, >>, to

 Form a new rule (stop with failure if not possible);

F Place any rules whose left-hand side is reducible by the new rule

 back into the set of axioms;

G Superpose the new rule on the whole set of rules to find the set of

 critical pairs;

H Introduce a new axiom for each critical pair;

 End

 End.
Three possible results: -terminate with success

- terminate with failure: if no ordering is possible in step E

- loop without terminating

A possible strategy for proving theorems is in two parts. Firstly, the given axioms are used to find a canonical set of rewrite rules (if possible). Secondly, new equations are shown to be theorems by reducing both sides to normal form. If the normal forms are the same, the theorem is shown to be a consequence of the given axioms; if different, the theorem is proven false.

2.7. Mathematical induction

[STANFORD]

The implementation of induction in a reasoning system presents very challenging search control problems. The most important of these is the ability to detremine the particular way in which induction will be applied during the proof, that is, finding the appropriate induction schema. Related issues include selecting the proper variable of induction, and recognizing all the possible cases for the base and the inductive steps.

Lemma caching, problem statement generalisation, and proof planning are techniques particularly useful in inductive theorem proving.

[WALSH] For proving theorems involving explicit induction ripling is a powerful heuristic developed at Edinburgh. A difference match is made between the induction hypothesis and the induction conclusion such that the skeleton of the annotated term is equal to the induction hypothesis and the erasure of the annotation gives the induction conclusion. The annotation consists of a wave-front which is a box containing a wave-hole. Rippling is the process whereby the wave-front moves in a well-defined direction (e.g. to the top of the term) by using directed (annotated) rewrite rules.

2.8. Higher order logic

[STANFORD] Higher order logic differs from first order logic in that quantification over functions and predicates is allowed. In higher order logic unifiable terms do not always possess a most general unifier and higher order unifciation is itself undecidable. Higher order logic is also incomplete; we cannot always proof wheter a given lemma is true or false.

2.9. Non-classical logics

For the different kinds of logic see the overview of logic.

Basically [STANFORD] three approaches to non-classical logic:

1) Try to mechanize the non-classical deductive calculi.

2) Provide a formulation in first-order logic and let a classical theorem prover handle it.

3) Formulate the semantics of the non-classical logic in a first-order framework where resolution or connection-matrix methods would apply.

Automating intuistionistic logic has applications in software development since writing a program that meets a specification corresponds to the problem of proving the specification within an intuistionistic logic.

2.10. Lambda calculus

[GUPTA] The syntaxis of lambda calculus is simple. Be E an expression and I an identifier then E::= (\I.E) | (E1 E2) | I . \I.E is called a lambda abstraction; E1 E2 is an application and I is an identifier. Identifiers are bound or free. In \I.I*I the identifier I is bound. The free identifiers in an expression are denoted by FV(E).

FV(\I.E) = FV(E) – {I}

FV(E1 E2) = FV(E1) U FV(E2)

FV(I) = {I}

An expression E is closed if FV(E) = {}

The free identifiers in an expression can be affected by a substitution. [E1/I]E2 denotes the substitution of E1 for all free occurences of I in E2.

[E/I](\I.E1) = \I.E1

[E/I](\J.E1) = \J.[E/I]E1, if I <> J and J not in FV(E).

[E/I](\J.E1) = \K.[E/I][K/J]E1, if I <> J, J in FV(E) and K is new.

[E/I](E1 E2) = [E/I]E1 [E/I]E2

[E/I]I = E

[E/I]J = J, if J <> I

Rules for manipulating the lambda expressions:

alpha-rule: \I.E (\J.[J/I]E, if J not in FV(E)

beta-rule: (\I.E1)E2 ([E2/I]E1

eta-rule: \I.E I (E, if I not in FV(E).

The alpha-rule is just a renaming of the bound variable; the beta-rule is substitution and the eta-rule implies that lambda expressions represent functions.

Say that an expression, E, containds the subexpression (\I.E1)E2; the subexpression is called a redex; the expression [E2/I]E1 is its contractum; and the action of replacing the contractum for the redex in E, giving E’, is called a contraction or a reduction step. A reduction step is written E (E’. A reduction sequence is a series of reduction steps that has finite or infinite length. If the sequence has finite length, starting at E1 and ending at En, n>=0, we write E1 (*En. A lambda expression is in (beta-)normal form if it contains no (beta-)redexes. Normal form means that there can be no further reduction of the expression.

Properties of the beta-rule:

a) The confluence property (also called the Church-Rosser property) : For any lambda expression E, if E (*E1 and E (*E2, then there exists a lambda expression, E3, such that E1 (*E3 and E2 (*E3 (modulo application of the alpha-rule to E3).

b) The uniqueness of normal forms property: if E can be reduced to E’ in normal form, then E’ is unique (modulo application of the alpha-rule).

 There exists a rewriting strategy that always discovers a normal form. The leftmost-outermost rewriting strategy reduces the leftmost-outermost redex at each stage until nomore redexes exist.

c) The standardisation property: If an expression has a normal form, it will be found by the leftmost-outermost rewriting strategy.

2.11. Typed lambda-calculus

[HARRISON] There is first a distinction between primitive types and composed types. The function space type constructor e.g. bool -> bool has an important meaning in functional programming. Type variables are the vehicle for polymorphism. The types of expressions are defined by typing rules. An example: if s:sigma -> tau and t:sigma than s t: tau. It is possible to leave the calculus of conversions unchanged from the untyped lambda calculusif all conversions have the property of type preservation.
There is the important theorem of strong normalization: every typable term has a normal form, and every possible sequence starting from a typable term terminates. This looks good, however, the ability to write nonterminating functions is essential for Turing completeness, so we are no longer able to define all computable functions, not even all total ones. In order to regain Turing-completeness we simply add a way of defining arbitrary recursive functions that is well-typed.

2.12. Proof planning

[BUNDY] In proof planning common patterns are captured as computer programs called tactics. A tactic guides a small piece of reasoning by specifying which rules of inference to apply. (In HOL and Nuprl a tactic is an ML function that when applied to a goal reduces it to a list of subgoals together with a justification function.) Tacticals serve to combine tactics.

If the and-introduction (ai) and the or-introduction (oi) constitute (basic) tactics then a tactical could be:

ai THEN oi OR REPEAT ai.

The proof plan is a large, customised tactic. It consists of small tactics, which in turn consist of smaller ones, down to individual rules of inference.

A critic consists of the description of common failure patterns (e.g. divergence in an inductive proof) and the patch to be made to the proof plan when this pattern occur. These critics can, for instance, suggest proiving a lemma, decide that a more general theorem should be proved or split the proof into cases.

Here are some examples of tactics from the Coq tutorial.

Intro : applied to a (b ; a is added to the list of hypotheses.

Apply H : apply hypothesis H.

Exact H : the goal is amid the hypotheses.

Assumption : the goal is solvable from current assumptions.

Intros : apply repeatedly Intro.

Auto : the prover tries itself to solve.

Trivial : like Auto but only one step.

Left : left or introduction.

Right : right or introduction.

Elim : elimination.

Clear H : clear hypothesis H.

Rewrite : apply an equality.

Tacticals from Coq:

T1;T2 : apply T1 to the current goal and then T2 to the subgoals.

T;[T1|T2|…|Tn] : apply T to the current goal; T1 to subgoal 1; T2 to subgoal 2 etc…

2.13. Genetic algorithms

A “genetic algorithm” based theorem prover could be built as follows: take a axiom, apply at random a rule (e.g. from the Gentzen calculus) and measure the difference with the goal by an evaluation function and so on … The evaluation function can e.g. be based on the number and sequence of logical operators. The semantic web inference engine can easily be adapted to do experiments in this direction.

Overview of theorem provers

 [NOGIN] gives the following ordering:

* Higher-order interactive provers:

 - Constructive: ALF, Alfa, Coq, [MetaPRL, NuPRL]

 - Classical: HOL, PVS

* Logical Frameworks: Isabelle, LF, Twelf, [MetaPRL]

* Inductive provers: ACL2, Inka

* Automated:

 - Multi-logic: Gandalf, TPS

 - First-order classical logic: Otter, Setheo, SPASS

 - Equational reasoning: EQP, Maude

* Other: Omega, Mizar

Higher order interactive provers

 Constructive

Alf: abbreviation of “Another logical framework”. ALF is a structure editor for monommorphic Martin-Löf type theory.

 Nuprl: is based on constructive type theory.

Coq:

 Classical

HOL: Higher Order Logic: based on LCF approach built in ML. Hol can operate in automatic and interactive mode. HOL uses classical predicate calculus with terms from the typed lambda-calculus = Church’s higher-order logic.

PVS: (Prototype Verification System) based on typed higher order logic

Logical frameworks

Pfenning gives this definition of a logical framework [PFENNING_LF]:

A logical framework is a formal meta-language for deductive systems. The primary tasks supported in logical frameworks to varying degrees are

· specification of deductive systems,

· search for derivations within deductive systems,

· meta-programming of algorithms pertaining to deductive systems,

· proving meta-theorems about deductive systems.

In this sense lambda-prolog and even prolog can be considered to be logical frameworks. Twelf is called a meta-logical framework and could thus be used to develop logical-frameworks. The border between logical and meta-logical does not seem to be very clear : a language like lambda-prolog certainly has meta-logical properties also.

Twelf, Elf: An implementation of LF logical framework; LF uses higher-order abstract syntax and judgement as types. Elf combines LF style logic definition with lambda-prolog style logic programming. Twelf is built on top of LF and Elf.

 Twelf supports a variety of tasks: [PFENNING_1999]

Specification of object languages and their semantics, implementation of

algorithms manipulating object-language expressions and deductions, and formal development of the meta-theory of an object-language.

For semantic specification LF uses the judgments-as-types representation

technique. This means that a derivation is coded as an object whose type rep-

resents the judgment it establishes. Checking the correctness of a derivation

is thereby reduced to type-checking its representation in the logical framework

(which is efficiently decidable).
Meta-Theory. Twelf provides two related means to express the meta-theory of

deductive systems: higher-level judgments and the meta-logic M 2 .

A higher-level judgment describes a relation between derivations inherent in

a (constructive) meta-theoretic proof. Using the operational semantics for LF

signatures sketched above, we can then execute a meta-theoretic proof. While

this method is very general and has been used in many of the experiments men-

tioned below, type-checking a higher-level judgment does not by itself guarantee

that it correctly implements a proof.

Alternatively, one can use an experimental automatic meta-theorem proving

component based on the meta-logic M 2 for LF. It expects as input a

\Pi 2 statement about closed LF objects over a fixed signature and a termination

ordering and searches for an inductive proof. If one is found, its representation as a higher-level judgment is generated and can then be executed.
Isabelle: a generic, higher-order, framework for rapid proptotyping of

deductive systems [STANFORD].(Theorem proving environments : Isabelle/HOL,Isabelle/ZF,Isabelle/FOL.)

 Object logics can be fromulated within Isabelle’s metalogic.

Inference rules in Isabelle are represented as generalized Horn clauses and are applied using resolution. However the terms are higher order logic (may contain function variables and lambda-abstractions) so higher-order unification has to be used.

Automated provers
Gandalf : [CASTELLO] Gandalf is a resolution based prover for classical first-order logic and intuistionistic first-order logic. Gandalf implements a number of standard resolution strategies like binary resolution, hyperresolution, set of support strategy, several ordering strategies, paramodulation, and demodulation with automated ordering of equalities. The problem description has to be provided as clauses. Gandalf implements a large number of various search strategies. The deduction machinery of Gandalf is based in Otter’s deduction machinery. The difference is the powerful search autonomous mode. In this mode Gandalf first checks whether a clause set has certain properties, then selects a set of different strategies which are likely to be useful for a given problem and then tries all these strategies one after another, allocating less time for highly specialized and incomplete strategies, and allocating more time for general and complete strategies.

Otter : is a resolution-style theorem prover for first order logic with equality [CASTELLO]. Otter provides the inference rules of binary resolution, hyperresolution, UR-resolution and binary paramodulation. These inference rules take a small set of clauses and infer a clause; if the inferred clause is new, interesting, and usefull, then it is stored. Otter maintains four lists of clauses:

. usable: clauses that are available to make inferences.

. sos = set of support (Wos): see further.

. passive

. demodulators: these are equalities that are used as rules to rewrite newly inferred rules.

The main processing loop is as follows:

While (sos is not empty and no refutation has been found)

1) Let given_clause be the lightest clause in sos

2) Move given_clause from sos to usable.

3) Infer and process new clauses using the inference rules in effect; each new clause must have the given clause as one of its parents and members of usable as its other parents; new clauses that pass the retention test are appended to sos.

Other

Prolog

PPTP: Prolog Technology Theorem Prover: full first order logic with soundness and completeness.

Lambda-prolog: higher order constructive logic with types.

 Lambda prolgo uses hereditary Harrop formulas; these are also used in Isabelle.

TPS: is a theorem prover for higher-order logic that uses typed lambda-calculus as its logical representation language and is based on a connection type mechanism (see matrix connection method) that incorporates Huet’s unification algorithm.TPS can operate in automatic and interactive mode.

LCF (Stanford, Edinburgh, Cambridge) (Logic for Computable Functions):

 Stanford:[DENNIS]

· declare a goal that is a formula in Scotts logic

· split the goal into subgoals using subgoaling commands

· subgoals are solved using a simplifier or generating more subgoals

· these commands create data structures representing a formal proof

Edinburgh LCF

· solved the problem of a fixed set of subgoaling by inventing a metalanguage (ML) for scripting proof commands.

· A key idea: have a type called thm. The only values of type thm are axioms or are obtained from axioms by applying the inference rules.

Nqthm (Boyer and Moore): (New Quantified TheoreM prover) inductive theorem proving; written in Lisp.

Overview of different logic systems

1. General remarks

2. Propositon logics

3. First order predicate logic

 3.1. Horn logic

4. Higher order logics

5. Modal logic/temporal logic

6. Intuistionistic logic

7. Paraconsistent logic

8. Linear logic

1. General remarks

Logic for the internet does of course have to be sound but not necessarily complete.

Some definitions ([CENG])

First order predicate calculus allows variables to represent function letters.

Second order predicate calculus allows variables to also represent predicate letters.

Propositional calculus does not allow any variables.

A calculus is decidable if it admits an algorithmic representation, that is, if there is an algorithm that, for any given (and (, it can determine in a finite amount of time the answer, “Yes” or “No”, to the question “Does (entail (?”.

If a wwf (well formed formula) has the value true for all interpretations, it is called valid. Gödel’s undecidability theorem: there exist wff’s such that their being valid can not be decided. In fact first order predicate calculus is semi-decidable: if a wwf is valid, this can be proved; if it is not valid this can not in general be proved.

[MYERS].

The Curry-Howard isomorphism is an isomorphism between the rules of natural deduction and the typing proof rules. An example:

A1 A2 e1: t1 e2:t2

-------------- --------------------

A1 & A2 <e1, e2>:t1*t2

This means that if a statement P is logically derivable and isomorph with t then there is a program and a value of type t.

Proof and programs
In logics a proof system like the Gentzen calculus starts from assumptions and a lemma. By using the proof system (the axioms and theorems) the lemma becomes proved.

On the other hand a program starts from data or actions and by using a programming system arrives at a result (which might be other data or an action; however actions can be put on the same level as data). The data are the assumptions of the program or proof system and the output is the lemma. As with a logical proof system the lemma or the results are defined before the program starts. (It is supposed to be known what the program does). (In learning systems perhaps there could exist programs where it is not known at all moments what the program is supposed to do).

So every computer program is a proof system.

A logic system has characteristics completeness and decidability. It is complete when every known lemma can be proved.(Where the lemma has to be known sematically which is a matter of human interpretation.) It is decidable if the proof can be given.

A program that uses e.g. natural deduction calculus for propositional logic can be complete and decidable. Many contemporary programming systems are not decidable. But systems limited to propositional calculus are not very powerful. The search for completeness and decidability must be done but in the mean time, in order to solve problems (to make proofs) flexible and powerful programming systems are needed even if they do not have these two characteristics.

A program is an algorithm. All algorithms are proofs. In fact all processes in the universe can be compared to proofs: they start with input data (the input state or assumptions) and they finish with ouput data (the output state or lemma). Then what is the completeness and decidability of the universe?

If the universe is complete and decidable it is determined as well; free will can not exist; if on the other hand it is not complete and decidable free will can exist, but, of course, not everything can be proved.

2. Propositon logics

3. First order predicate logic

Points 2 , 3 mentioned for completeness. See [BENTHEM].

 3.1. Horn logic: see above the remarks on resolution.

4. Higher order logics

[DENNIS].

In second order logic quantification can be done over functions and predicates. In first order logic this is not possible.

Important is the Gödel incompletness theorem : the corectness of a lemma cannot always be proven.

Another problem is the Russell paradox : P(P) iff ~P(P). The solution of Russell : disallow expressions of het kind P(P) by introducing typing so P(P) will not be well typed. (Types are interpreted as Scotts domains (CPOs).Keep this ?)

In the logic of computable functions (LCF) terms are from the typed lambda calculus and formulae are from predicate logic. This gives the LCF family of theorem provers : Stanford LCF, Edinburgh LCF, Cambridge LCF and further : Isabelle, HOL, Nuprl and Coq.

5. Modal logic (temporal logic)

[LINDHOLM] [VAN BENTHEM]Modal logics deal with a number of possible worlds, in each of which statements of logic may be made. In propositional modal logics the statements are restricted to those of propositional logic. Furthermore, a reachability relation between the possible worlds is defined and a modal operator (usually denoted by (), which define logic relations between the worlds.

The standard interpretation of the modal operator is that (P is true in a world x if P is true in any world that is reachable from x, i.e. in all worlds y where R(x,y). (P is also true if there are no successor worlds. The (operator can be read as « necessarily ».

Usually, a dual operator (is also introduced. The definition of (is ~(~, translating into « possible ».

There is no « single modal logic », but rather a family of modal logics which are defined by axioms, which constrain the reachability relation R. For instance, the modal logic D is characterized by the axiom (P ((P, which is equivalent to reqiring that all worlds must have a successor.

A proof system can work with semantic tableaux for modal logic.

The addition of (and (to predicate logic gives modal predicate logic.
Temporal logic: in temporal logic the possible worlds are moments in time. The operators (and (are replaced by respectively by G (going to) and F (future). Two operators are added : H (has been) and P (past).

Epistemic logic: here the worlds are considered to be knowledge states of a person (or machine). (is replaced by K (know) and (by ~K~ (not know that = it might be possible).

Dynamic logic: here the worlds are memory states of a computer. The operators indicate the necessity or the possibility of state changes from one memory state to another. A program is a sequence of worlds. The accessibility relation is T(() where (indicates the program. The operators are : [(] and <(>. State b entails [(] (iff for each state accesible from b (is valid. State b entails <(> if there is a state accessible with (valid. (([(] (means : with input condition (all accessible states will have output condition ((correctness of programs).

Different types of modal logic can be combined e.g. [(] K ((K [(](which can be interpreted as: if after execution I know that (implies that I know that (will be after execution.

S4 or provability logic : here (is interpreted as a proof of A.

6. Intuistionistic or constructive logic

[STANFORD] In intuistionistic logic the meaning of a statement resides not inits truth conditions but in the means of proof or verification. In classical logic p v ~p is always true ; in constructive logic p or ~p has to be ‘constructed’. If forSome x.F then effectively it must be possible to compute a value for x.

The BHK-interpretation of constructive logic :

(Brouwer, Heyting, Kolmogorov)

a) A proof of A and B is given by presenting a proof of A and a proof of B.

b) A proof of A or B is given by presenting either a proof of A or a proof of B.

c) A proof of A (B is a procedure which permits us to transform a proof of A into a proof of B.

d) The constant false has no proof.

A proof of ~A is a procedure that transform a hypothetical proof of A into a proof of a contradiction.

7. Paraconsistent logic

[STANFORD]

The development of paraconsistent logic was initiated in order to challenge the logical principle that anything follows from contradictory premises, ex contradictione quodlibet (ECQ). Let
 INCLUDEPICTURE "http://plato.stanford.edu/entries/logic-paraconsistent/models.gif" * MERGEFORMATINET

be a relation of logical consequence, defined either semantically or proof-theoretically. Let us say that is explosive iff for every formula A and B, {A , ~A} [image: image2.png]

B. Classical logic, intuitionistic logic, and most other standard logics are explosive. A logic is said to be paraconsistent iff its relation of logical consequence is not explosive.

Also in most paraconsistent systems the disjunctive syllogism does not hold:

From A, ~ A v B we cannot conclude B. Some systems:

Non-adjunctive systems: from A , B the inference A & B fails.

Non-truth functional logic: the value of A is independent from the value of ~A (both can be one e.g.).

Many-valued systems: more than two truth values are possible.If one takes the truth values to be the real numbers between 0 and 1, with a suitable set of designated values, the logic will be a natural paraconsistent fuzzy logic.

Relevant logics.

8.Linear logic

[LINCOLN] Patrick Lincoln Linear Logic SIGACT 1992 SRI and Stanford University.

In linear logic propositions are not viewed as static but more like ressources.

If D implies (A and B) ; D can only be used once so we have to choose A or B.

In linear logic there are two kinds of conjuntions: multiplicative conjunction where A (B stands for the proposition that one has both A and B at the same time; and additive conjuntion A & B stands for a choice between A and B but not both. The multiplicative disjunction written A (B stands for the proposition “if not A, then B” . Additive disjunction A (B stands for the possibility of either A or B, but it is not known which. There is the linear implication A –o B which can be interpreted as “can B be derived using A exactly once?”.

There is a modal storage operator. !A can be thought of as a generator of A’s.

There exists propositional linear logic, first order linear logic and higher order linear logic. A sequent calculus has been defined.
Recently 1990 propositional linear logic has been shown to be undecidable.

[KERBER] Manfred Kerber, Mechanised Reasoning, Midlands Graduate School in Theoretical Computer Science, The University of Birmingham, November/December 1999, http://www.cs.bham.ac.uk/~mmk/courses/MGS/index.html
 [STANFORD] Stanford Encyclopedia of philosophy - Automated

reasoning http://plato.stanford.edu/entries/reasoning-automated/
[DICK] A.J.J.Dick, Automated equational reasoning and the knuth-bendix algorithm: an informal introduction, Rutherford Appleton Laboratory Chilton, Didcot OXON OX11 OQ, http://www.site.uottawa.ca/~luigi/csi5109/church-rosser.doc/

[CASTELLO] R.Castello e.a. Theorem provers survey. University of Texas at Dallas. http://citeseer.nj.nec.com/409959.html

[CENG] André Schoorl, Ceng 420 Artificial intelligence University of Victoria, http://www.engr.uvic.ca/~aschoorl/ceng420/

[GENESERETH] Michael Genesereth, Course Computational logic, Computer Science Department, Stanford University.

[VAN BENTHEM] Van Benthem e.a., Logica voor informatici, Addison Wesley 1991.

[UMBC] TimothyW.Finin, Inference in first order logic, Computer Science and Electrical Engineering, University of Maryland Baltimore Country, http://www.cs.umbc.edu/471/lectures/9/sld040.htm
[WALSH] Toby Walsh, A divergence critic for inductive proof, 1/96, Journal of Artificial Intelligence Research, http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/walsh96a-html/section3_3.html
[BUNDY] Alan Bundy , Artificial Mathematicians, May 23, 1996, http://www.dai.ed.ac.uk/homes/bundy/tmp/new-scientist.ps.gz

[GUPTA] Amit Gupta & Ashutosh Agte, Untyped lambda calculus, alpha-, beta- and eta- reductions, April 28/May 1 2000, http://www/cis/ksu.edu/~stefan/Teaching/CIS705/Reports/GuptaAgte-2.pdf

[LINDHOLM] Lindholm, Exercise Assignment Theorem prover for propositional modal logics, http://www.cs.hut.fi/~ctl/promod.ps
[NADA] Arthur Ehrencrona, Royal Institute of Technology Stockholm, Sweden, http://cgi.student.nada.kth.se/cgi-bin/d95-aeh/get/umeng
[DENNIS] Louise Dennis Midlands Graduate School in TCS, http://www.cs.nott.ac.uk/~lad/MR/lcf-handout.pdf
[COQ] Huet e.a. RT-0204-The Coq Proof Assistant : A Tutorial, http://www.inria.fr/rrt/rt-0204.html.

[PFENNING_1999] Pfenning e.a., Twelf a Meta-Logical framework for deductive Systems, Department of Computer Science, Carnegie Mellon University, 1999.

[PFENNING_LF] http://www-2.cs.cmu.edu/afs/cs/user/fp/www/lfs.html
[HARRISON] J.Harrison, Introduction to functional programming, 1997.

[DONALD] A sociology of proving. http://dream.dai.ed.ac.uk/papers/donald/subsectionstar4_7.html
[MYERS] CS611 LECTURE 14 The Curry-Howard Isomorphism, Andrew Myers.

PAGE
19

