Note about logic :

We should see the difference between :

· we don’t know

· we know

· we think we know

· x thinks he kows

· x says no

· we say no

· it is no (whatever else)

Inference engine :

A different set of meta-rules for:

· closed world

· non closed world

· intuistionistic logic

· 1st order logic

Define the logic :

:logic rdfs:property :closed_world

 : open_world default

 rdfs:class :first_order

 : high_order

 : intuistionistic

 : paraconsistent

 :optimisation :clause_reorder

 :limit_search_space

 :consistency :check_1

 :check_2

Thesis remarks

optimalisation :

 * reordering (rules and premisses)

 * constraint programming : introduce constraints ,

 * deduce falsity as quickly as possible .

no closed world (can we expect that false implies anything ?

is site A says p and site B says not p may we conclude anything ?

Thus we need paraconsistent logic .

Even site A says p and site B says not P may we conclude a contradiction ?

Not so they might be reasoning on another universe so we may not even deduce false!!. What to do ?

We can :

 - not use the rules or statements that lead to contradiction

 - only use the rules or statements of one site

 - merge the universes so p is true for one subset and false for another

cfr. All birds have wings on site A and on site B : a pinguin is a bird and does not have wings .

Should everyone use exactly the same logic ? Seems quit necessary . Which logic ?

log:includes means {statement-set} log:includes {statement} . So we must check whether the statement is in the statement-set .

Euler : simple was meant to be for simple entailment ; not used anymore .

Euler : the StringBuffer gen is used to generate extra clauses .

Euler : use of the variable table in the parser : variables within one clause or a group of clauses (if the log:forAll statement is at front) do need to get the same varid in their Euler object .

In the Euler class all variables are local i.e. only valid within one clause .

Euler : {set} log:entails :c . The set is called blunt; :c is called sharp ; ETCkind means the kind of entailment .

{:p a :transitiveProperty.:a :p :b.:b :p :c} log:implies {:a :p :c} . This rule will be matched by every goal-term.

It should be at the back . Question is : should we use it every time ? Or can we check if it is applicable ? How could we do this ? Can we give instructions to the engine how it should treat certain rules ?

Generally : rules ordered by frequency of utilisation . (The engine must be able to measure the frequency of utilisation !!

A genetic algorithm could be used for optimising a set of rules. Random permutations are made and evaluated; only the best mutations can continue to exist ?? Only for small sets of rules????

We could use a genetic algoritm for optimising a rule-set. Criterium is the response time. Actions are changing the sequence of rules ? Perhaps other actions?

We could use learning algoritms from AI domain. Q-learning: actions: change order; returned reward : dependent on response time .

If a premis has a clause with a transitive property , treat it last ! So premis reordering based on the fact whether the premis leads to a frequently used rule or not .

Denotational semantics : Euler is a language; the parser defines the syntax ; the Euler class defines the semantics

(what does it do?) A compiler to an intermediate language preserves the semantics . The language defined by Euler must be definable for its syntax by BNF . Data structures constitute a syntax because they say how something can be represented.

Why is /swap/log different from prolog?

Take a triple :a :b :c. We can make following queries:

1) _x :b :c.

2) :a _b :c.

3) :a :b _c.

If we would translate the triples into binary predicates as follows:

:subject :verb :object becomes verb(subject, object).

Thus for higher triple: :a :b :c. becomes b(a,c). But now only the queries:

b(X,c) and b(a,X) are possible.

Take the set of triples:

:a :b :c. :b :d :e. In prolog: b(a,c) en d(b,e) (not possible!!!

The right way to put this on prolog is to create a predicate triple:

triple(a,b,c) so we get the queries: triple(X,b,c), triple(a,X,c) and triple(a,b,X).

but what with embedded triples ??

{:a :b :c} :d {:e :f :g} gets triple(triple(a,b,c),d,triple(e,f,g))

What about: :a :b { :c :d :e. :f :g :h. :i :j :k} ? We cannot use a predicate e.g. ‘tripleSet’ because we do not now the number of elements in the list. We could make a list e.g.

triple (a,b,[triple(c,d,e),triple(f,g,h),triple(i,j,k)]) but how do we detect the list for matching?

On the scope of variables:

In rules variables are bounded: existentially or universally. Their scope is limited to the rule; if not we have to replace everywhere where the variable occurs e.g. if :mailbox is a variable and we replace :mailbox in a rule by :thing do we have to replace :mailbox everywhere? Surely not, this would be inconsistent.

Take following example:

In rdf file 1:

{{:mailbox :is :file} log:implies {:mailbox :has :name} a log:truth; log:forAll :mailbox, :file}

In rdf file 2:

{{:person :has :name.} log:implies {:person :has :mailbox} a log:truth; log:forAll : mailbox, :person}

“John” :has :mailbox.

After a merge and the query: _X :is :file. The answer is:

“John” :is :file.

How does this come? In rule 1 :mailbox is a variable that can thus be replaced by anything and not only by mailboxes as we might think from the name. If it may only match with mailbox thenit must not be declared as a variable. Now suppose we leave out the log:forAll :mailbox in the first rule. But then after the merge :mailbox will become a variable again!!!!

Can facts contain variables???

How to match:

{:a :b :c} log:implies { [:d :e; :f :g,:h,:i] {:j :k :l.:m:n:o} [[:p :q] [:r:t]] }

with query e.g. [:z _X :q] ??

or: { [:d :e; :f :g,:h,:i] {:j :k :l.:m:n:o} [[:p :q] [:r:t]] } log:implies {:a :b :c}

with query e.g. [:z _X :q]

Rules must be restricted; cannot be general rdf format !!!!

{:a :b :c} log:implies {:d :e :f. :g :h :i} becomes

{:a :b :c} log:implies {:d :e :f}

{:a :b :c} log:implies {:g :h :i}

but existential quantified variables must be skolemized.

Is unification generally possible between two terms = triple lists?

Condition for queries and goals ?

What with the query {-X :b :c} :d :e. ? Must match with {:z :b :c} :d :e.

Structure of the N3 data:

[image: image1.png]08

[Clause]

remTd) - Cinse

—
(Term, [}
Fae
Tem
[Triple] [Tem]
T,
s Pt
— J
PES
[Propetty]
Py
vg,h/ oLt
TN
bor Tam
[Object]
et
b Fam

(Term, Term)

Fules

Matching of two terms:

4 cases: 1) [Term] with [Term]

2) [Term] with [Triple]

3) [Triple] with [Term]

4) [Triple] with [Triple]

Note: where Atom is said can also be a variable.

1) [Term] with [Term] As each single Term is either a list of terms or a list of triples then, if we merge all lists we become two lists of triples.

So 1) 2) and 3) are really the same as 4.

Matching of [Triple] with [Triple] (match each triple from list one with each triple from list two.

Match a Triple with a Triple:

Match Subject a with Subject b and PropertyList a with PropertyList b

Beware: substitutions must be propagated throughout the complete Term !!!! and so do variable renames.

a) Match Subject with Subject:

· match Atom with Atom: must be equal

· match Atom with Term: no match

· match Term with Term: see higher.

b) Match PropertyList with PropertyList

Match each Property with each property.

Match Verb with Verb (same as subject)

b) Match ObjectList with ObjectList

c) Match each Object with each Object (same as Subject)

When Term1 is matched with Term 2 then every element from Term1 must be matched with every element from Term2 but not vice versa; Term 2 Can contain less elements as Term1.

This algorithm is decidable for finite terms.

Comparison between Haskell tags (data structure) and XML-tags

In fact there is very little difference between the two. A variable can contain the name of an xml-tag but not so in Haskell: e.g. a variable cannot contain a tag (but it can contain the name of a tag.Take thestructure:

data TagName String

We can of course create a variable:

s = “TagName” that contains the name of the tag but mapping is indirect and needs a conditional structure:

s == “TagName” && Tag a == TagName a = ….

But isn’t this so in xml too?

However quiet some tools do exist for xml; they do not for the Haskell tags.

e.g. give me a list of all tags with name “TagName”. Or give the value of the tag that follows after a tag with name x and value y.

In xml we can make mixed lists of tags.

In Haskell it is not possible to create a bad structure; this is possible in xml but structure can be enforced by DTD or xml-schema.

The Haskell tags are not accessible i.e. there is no introspection. Can you ask the list of tags with the name “Property” ? In XML you can.

It should be nice in Haskell too to be able to get a list of functions and to add functions on the fly.

This XML tree can be used to make global data possible in Haskell: with every function the XML tree is passed as a parameter; tags and content can be added as wished to the tree. This can be made transparent: the user declares globally XML-trees; these trees are made child of the one XML database that is automatically passed as a parameter in all functions without the user declaring it. (The database could have a different structure too).

_1081356726.doc
[image: image1.png]08

[Clause]

remTd) - Cinse

—
(Term, [}
Fae
Tem
[Triple] [Tem]
T,
s Pt
— J
PES
[Propetty]
Py
vg,h/ oLt
TN
bor Tam
[Object]
et
b Fam

(Term, Term)

Fules

