An inference engine for RDF

An inference engine for RDF

Master thesis

G.Naudts

831708907

22 augustus 2003

Open University Netherlands

Agfa Gevaert

This document is the Master Thesis made as a part of my Master Degree in Computer Science Education (Software Systems) at the Open University of the Netherlands. The work has been done in collaboration with the research department of the company Agfa in Mortsel Belgium.

Student data

Name Guido Naudts

Student number 831708907

Address Secretarisdreef 5

 2288 Bouwel

Telephone work 0030-2-542.76.01

 Home 0030-14-51.32.43

E-mail Naudts_Vannoten@yahoo.com
Coaching and graduation committee

Chairman: dr J.T. Jeuring, professor at the Open University

Secretary : ir. F.J. Wester, senior lecturer at the Open University

Coach: ir. J. De Roo, researcher at Agfa Gevaert.

Acknowledgements

I want to thank Ir.J.De Roo for giving me the opportunity for making a thesis about a tremendous subject and his guidance in the matter.

Pr.J.Jeuring and Ir. F.Wester are thanked for their efforts to help me produce a readable and valuable text.

I thank M.P.Jones for his Prolog demo in the Hugs distribution that has very much helped me.

I thank all the people from the OU for their efforts during the years without which this work would not have been possible.

I thank my wife and children for supporting a father seated behind his computer during many years.

1An inference engine for RDF

1Master thesis

1G.Naudts

1Open University Netherlands

1Agfa Gevaert

3Student data

3Coaching and graduation committee

4Acknowledgements

12Summary

14Samenvatting

16Chapter 1. Introduction

161.1.The Semantic Web

161.1.1.Scope

161.1.2. Automation

181.2. Case study

181.2.1. Introduction

181.2.2. The case study

201.2.3.Conclusions of the case study

21Chapter 2. The building blocks

212.1. Introduction

212.2.XML and namespaces

212.2.1. Definition

212.2.2. Features

232.3.URI’s and URL’s

232.3.1. Definitions

232.3.2. Features

242.4.Resource Description Framework RDF

262.5.Notation 3

262.5.1. Introduction

262.5.2. Basic properties

292.6.The logic layer

292.7.Semantics of N3

292.7.1. Introduction

302.7.2. The model

302.7.3. Examples

32Chapter 3. A global view of the Semantic Web

323.1. Introduction.

323.2. The layers of the Semantic Web

35Chapter 4. Description of the research question.

354.1. The problem

364.2. The solution framework

38Chapter 5. The graph model of RDF and distributed inferencing.

385.1. Introduction

385.2.Recapitulation and definitions

435.3. The basic structure of RDFEngine

435.3.1. The ADTs and mini-languages

495.3.2. Mechanisms

515.3.3. Conclusion

525.4.Languages needed for inferencing

525.4.1.Introduction

525.3.2.Interpretation of variables

535.4.3.Variables and unification

535.5.Matching two triplesets

545.6.The model interpretation of a rule

585.7.Unification

595.8.Matching two statements

605.9.The resolution process

615.10.Structure of the engine

655.11.The backtracking resolution mechanism in Haskell

655.12.The closure path.

655.12.1.Problem

665.12.2. The closure process

665.12.3. Notation

665.12.4. Examples

695.13.The resolution path.

695.13.1. The process

695.13.2. Notation

705.13.3. Example

705.14.Variable renaming

725.15.Comparison of resolution and closure paths

725.15.1. Introduction

725.15.2. Elaboration

745.16.Anti-looping technique

755.16.1. Introduction

755.16.2. Elaboration

765.16.3.Failure

775.16.4.Completeness

775.16.5.Monotonicity

795.17.A formal theory of graph resolution

795.17.1. Introduction

795.17.2.Definitions

815.17.3. Lemmas

865.18.An extension of the theory to variable arities

865.18.1. Introduction

865.18.2.Definitions

875.18.3. Elaboration

875.19.An extension of the theory to typed nodes and arcs

875.19.1. Introduction

875.19.2. Definitions

885.19.3. Elaboration

89Chapter 6. RDF, inferencing and logic.

896.1.The model mismatch

906.2.Modelling RDF in FOL

906.2.1. Introduction

906.2.2. The RDF data model

926.2.3. A problem with reification

936.2.4.Conclusion

936.3.Unification and the RDF graph model

956.4.Embedded rules

956.5.Completeness and soundness of the engine

966.7.From Horn clauses to RDF

966.7.1. Introduction

966.7.2. Elaboration

976.8. Comparison with Prolog and Otter

976.8.1. Comparison of Prolog with RDFProlog

996.8.3. Otter

996.9.Differences between RDF and FOL

996.9.1. Anonymous entities

1006.9.2.‘not’ and ‘or’

1026.9.3.Proposition

1036.10.Logical implication

1036.10.1.Introduction

1036.10.2.RDF and implication

1046.10.3.Conclusion

1046.11. Paraconsistent logic

1046.12. RDF and constructive logic

1056.13. The Semantic Web and logic

1066.14.OWL-Lite and logic

1066.14.1.Introduction

1066.14.2.Elaboration

1076.15.The World Wide Web and neural networks

1086.16.RDF and modal logic

1086.16.1.Introduction

1086.16.2.Elaboration

1106.17. Logic and context

1116.18. Monotonicity

1126.19. Learning

1136.20. Conclusion

114Chapter 7. Existing software systems

1147.1. Introduction

1147.2. Inference engines

1147.2.1.Euler

1157.2.2. CWM

1157.2.3. TRIPLE

1157.3. RuleML

1157.3.1. Introduction

1157.3.2. Technical approach

1157.4. The Inference Web

1157.4.1. Introduction

1167.4.2. Details

1167.4.3. Conclusion

1167.5. Query engines

1167.5.1. Introduction

1177.5.2. DQL

1177.5.3. RQL

1187.5.4. XQuery

1187.6. Swish

119Chapter 8. Optimization.

1198.1.Introduction

1198.2. Discussion.

122Chapter 9. Inconsistencies

1229.1. Introduction

1229.2. Elaboration

1239.3. OWL Lite and inconsistencies

1239.3.1. Introduction

1239.3.2. Demonstration

1249.3.2. Conclusion

1249.4. Using different sources

1249.4.1.Introduction

1249.4.2. Elaboration

1269.5. Reactions to inconsistencies and trust

1269.5.1.Reactions to inconsistency

1279.5.2.Reactions to a lack of trust

1279.6.Conclusion

128Chapter 10. Applications.

12810.1. Introduction

12810.2. Gedcom

12810.3. The subClassOf testcase

12910.4. Searching paths in a graph

12910.5. An Alpine club

13210.6. Simulation of logic gates.

13310.7. A description of owls.

13410.8. A simulation of a flight reservation

136Chapter 11. Conclusion

13611.1.Introduction

13611.2.Characteristics of an inference engine

13811.3. An evaluation of the RDFEngine

13911.4. Forward versus backwards reasoning

13911.5. Final conclusions

144Bibliography

148List of abbreviations

149Annexe 1: Excuting the engine

150Annexe 2. Example of a closure path.

154Annexe 3. Test cases

154Gedcom

159Ontology

160Paths in a graph

162Logic gates

164Simulation of a flight reservation

167Annexe 4. Theorem provers an overview

1671.Introduction

1672. Overview of principles

1672.1. General remarks

1682.2 Reasoning using resolution techniques: see the chapter on resolution.

1682.3. Sequent deduction

1692.4. Natural deduction

1692.5. The matrix connection method

1702.6 Term rewriting

1712.7. Mathematical induction

1722.8. Higher order logic

1722.9. Non-classical logics

1732.10. Lambda calculus

1742.11. Typed lambda-calculus

1742.12. Proof planning

1752.13. Genetic algorithms

175Overview of theorem provers

176Higher order interactive provers

176Classical

176Logical frameworks

177Automated provers

178Prolog

179Overview of different logic systems

179General remarks

1801) Proof and programs

1802. Propositon logics

1803. First order predicate logic

1814. Higher order logics

1815. Modal logic (temporal logic)

1826. Intuistionistic or constructive logic

1827. Paraconsistent logic

1838.Linear logic

184Bibliography

186Annexe 5. The source code of RDFEngine

Summary

The Semantic Web is an initiative of the World Wide Web Consortium (W3C). The goal of this project is to define a series of standards. These standards will create a framework for the automation of activities on the World Wide Web (WWW) that still need manual intervention by human beings at this moment.

A certain number of basic standards have been developed already. Among them XML is without doubt the most known. Less known is the Resource Description Framework (RDF). This is a standard for the creation of meta information. This is the information that has to be given to the machines to permit them to handle the tasks previously done by human beings.

Information alone however is not sufficient. In order to take a decision it is often necessary to follow a certain reasoning. Reasoning is connected with logics. The consequence is that the machines have to be fed with rules and processes (read: programs) that can take decisions, following a certain logic, based on available information.

These processes and reasonings are executed by inference engines. The definition of inference engines for the Semantic Web is at the moment an active field of experimental research.

These engines have to use the information that is expressed following the standard RDF. This means that they have to follow the data model of this standard. The consequences of this requirement for the structure of the engine are explored in this thesis.

An inference engine uses information and, given a query, reasons with this information with a solution as a result. It is important to be able to show that the solutions, obtained in this manner, have certain characteristics. These are, between others, the characteristics completeness and validity. This proof is delivered in this thesis in two ways:

1) by means of a reasoning based on the graph theoretical properties of RDF

2) by means of a model based on First Order Logics.

On the other hand these engines must take into account the specificity of the World Wide Web. One of the properties of the web is the fact that sets are not closed. This implies that not all elements of a set are known. Reasoning then has to happen in an open world. This fact has far reaching logical implications.

During the twentieth century there has been an impetous development of logic systems. More than 2000 kinds of logic were developed. Notably First Order Logic (FOL) has been under heavy attack, beside others, by the dutch Brouwer with the constructive or intuistionistic logic. Research is also done into kinds of logic that are suitable for usage by machines.

In this thesis I argue that an inference engine for the World Wide Web should follow a kind of constructive logic and that RDF, with a logical implication added, satisfies this requirement.

The structure of the World Wide Web has a number of consequences for the properties that an inference engine should satisfy. A list of these properties is established and discussed.

A query on the World Wide Web can extend over more than one server. This means that a process of distributed inferencing must be defined. This concept is introduced in an experimental inference engine.

An important characteristic for an engine that has to be active in the World Wide Web is efficiency. Therefore it is important to do research about the methods that can be used to make an efficient engine. The structure has to be such that it is possible to work with huge volumes of data. Eventually these data are kept in relational databases.

On the World Wide Web there is information available in a lot of places and in a lot of different forms. Joining parts of this information and reasoning about the result can easily lead to the existence of contradictions and inconsistencies. These are inherent to the used logic or are dependable on the application. A special place is taken by inconsistencies that are inherent to the used ontology. For the Semantic Web the ontology is determined by the standards rdfs and OWL.

An ontology introduces a classification of data and apllies restrictions to those data. An inference engine for the Semantic Web needs to have such characteristics that it is compatible with rdfs and OWL.

An executable specification of an inference engine in Haskell was constructed. This permitted to test different aspects of inferencing and the logic connected to it. This engine has the name RDFEngine. A large number of existing testcases was executed with the engine. A certain number of testcases was constructed, some of them for inspecting the logic characteristics of RDF.

Samenvatting

Het Semantisch Web is een initiatief van het World Wide Web Consortium (W3C). Dit project beoogt het uitbouwen van een reeks van standaarden. Deze standaarden zullen een framework scheppen voor de automatisering van activiteiten op het World Wide Web (WWW) die thans nog manuele tussenkomst vereisen.

Een bepaald aantal basisstandaarden zijn reeds ontwikkeld waaronder XML ongetwijfeld de meest gekende is. Iets minder bekend is het Resource Description Framework (RDF). Dit is een standaard voor het creëeren van meta-informatie. Dit is de informatie die aan de machines moet verschaft worden om hen toe te laten de taken van de mens over te nemen.

Informatie alleen is echter niet voldoende. Om een beslissing te kunnen nemen moet dikwijls een bepaalde redenering gevolgd worden. Redeneren heeft te maken met logica. Het gevolg is dat de machines gevoed moeten worden met regels en processen (lees: programma’s) die, volgens een bepaalde logica, besluiten kunnen nemen aan de hand van beschikbare informatie.

Deze processen en redeneringen worden uitgevoerd door zogenaamde inference engines. Dit is op het huidig ogenblik een actief terrein van experimenteel onderzoek.

De engines moeten gebruik maken van de informatie die volgens de standaard RDF wordt weergegeven. Zij dienen aldus het data model van deze standaard te volgen. De gevolgen hiervan voor de structuur van de engine worden in deze thesis nader onderzocht.

Een inference engine gebruikt informatie en, aan de hand van een vraagstelling, worden redeneringen doorgevoerd op deze informatie met een oplossing als resultaat. Het is belangrijk te kunnen aantonen dat de oplossingen die aldus bekomen worden bepaalde eigenschappen bezitten. Dit zijn onder meer de eigenschappen volledigheid en juistheid. Dit bewijs wordt op twee manieren geleverd: enerzijds bij middel van een redenering gebaseerd op de graaf theoretische eigenschappen van RDF; anders bij middel van een op First Order Logica gebaseerd model.

Anderzijds dienen zij rekening te houden met de specificiteit van het World Wide Web. Een van de eigenschappen van het web is het open zijn van verzamelingen. Dit houdt in dat van een verzameling niet alle elementen gekend zijn. Het redeneren dient dan te gebeuren in een open wereld. Dit heeft verstrekkende logische implicaties.

In de loop van de twintigste eeuw heeft de logica een stormachtige ontwikkeling gekend. Meer dan 2000 soorten logica werden ontwikkeld. Aanvallen werden doorgevoerd op het bolwerk van de First Order Logica (FOL), onder meer door de nederlander Brouwer met de constructieve of intuistionistische logica. Gezocht wordt ook naar soorten logica die geschikt zijn voor het gebruik door machines.

In deze thesis wordt betoogd dat een inference engine voor het WWW een constructieve logica dient te volgen enerzijds, en anderzijds, dat RDF aangevuld met een logische implicatie aan dit soort logica voldoet.

De structuur van het World Wide Web heeft een aantal gevolgen voor de eigenschappen waaraan een inference engine dient te voldoen. Een lijst van deze eigenschappen wordt opgesteld en besproken.

Een query op het World Wide Web kan zich uitstrekken over meerdere servers. Dit houdt in dat een proces van gedistribueerde inferencing moet gedefinieerd worden. Dit concept wordt geïntroduceerd in een experimentele inference engine.

Een belangrijke eigenschap voor een engine die actief dient te zijn in het World Wide Web is efficientie. Het is daarom belangrijk te onderzoeken op welke wijze een efficiente engine kan gemaakt worden. De structuur dient zodanig te zijn dat het mogelijk is om met grote volumes aan data te werken, die evntueel in relationele databases opgeslagen zijn.

Op het World Wide Web is informatie op vele plaatsen en in allerlei vormen aanwezig. Het samen voegen van deze informatie en het houden van redeneringen die erop betrekking hebben kan gemakkelijk leiden tot het ontstaan van contradicties en inconsistenties. Deze zijn inherent aan de gebruikte logica of zijn afhankelijk van de applicatie. Een speciale plaats nemen de inconsistenties in die inherent zijn aan de gebruikt ontologie. Voor het Semantisch Web wordt de ontologie bepaald door de standaarden rdfs en OWL. Een ontologie voert een classifiering in van gegevens en legt ook beperkingen aan deze gegevens op. Een inference engine voor het Semantisch Web dient zulkdanige eigenschappen te bezitten dat hij compatibel is met rdfs en OWL.
Een uitvoerbare specificatie van een inference engine in Haskell werd gemaakt. Dit liet toe om allerlei aspecten van inferencing en de ermee verbonden logica te testen. De engine werd RDFEngine gedoopt. Een groot aantal bestaande testcases werd onderzocht. Een aantal testcases werd bijgemaakt, sommige speciaal met het oogmerk om de logische eigenschappen van RDF te onderzoeken.

Chapter 1. Introduction

1.1.The Semantic Web

1.1.1.Scope

This thesis will concentrate on RDF and inferencing. Here only an overview of the Semantic Web is given.

By the advent of the internet a mass communication medium has become available. One of the most important and indeed revolutionary characteristics of the internet is the fact that now everybody is connected with everybody, citizens with citizens, companies with companies and citizens with companies, government etc... In fact now the global village exists. This interconnection creates fascinating possibilities of which only few are used today. The internet serves mainly as a vehicle for hypertext. These texts with high semantic value for humans have little semantic value for computers. One of the goals of the Semantic Web is to augment the semantic content in web information that is usable by computers. Important progress can be made by putting semantic information into existing web pages. An example of an effort in that direction is SHOE [HEFLIN].

The semantic information serves two purposes:

1) augment the accessibility of the information present on the internet.

2) automate the exchanges between computers that are active on the internet.

1.1.2. Automation

The problem always with interconnection of companies is the specificity of the tasks to perform. EDI was an effort to define a framework that companies could use to communicate with each other. Other efforts have been done by standardizing XML languages (e.g. ebXML). At the current moment an effort endorsed by large companies is underway: web services.

The interconnection of all companies and citizens one with another creates the possibility of automating a lot of transactions that are now done manually or via specific and dedicated automated systems. It should be clear that separating the common denominator from all the efforts mentioned higher, standardizing it so that it can be reused a million times certainly has to be interesting. Of course standardisation may not develop into bureaucracy impeding further developments. But e.g. creating 20 times the same program with different programming languages does not seem very interesting either, except if you can leave the work to computers and even then, a good use should be made of computers.

If every time two companies connect to each other for some application they have to develop a framework for that application then the efforts to develop all possible applications become enormous. Instead a general system can be developed based on inference engines and ontologies. The mechanism is as follows: the interaction between the communicating partners to achieve a certain goal is laid down into facts and rules using a common language to describe those facts and rules where the flexibility is provided by the fact that the common language is in fact a series of languages and tools included in the Semantic Web vision: XML, RDF, RDFS, DAML+OIL, SweLL, OWL. To achieve automatic interchange of information ontologies play a crucial role; because a computer is not able to make intelligent guesses to the meaning of something as humans do, the meaning of something (i.e. the semantics) have to be defined in terms of computer actions. A computer agent recieves a communication from another agent. It must then be able to transform that communication into something it understands i.e. that it can interpret and act upon. The word ‘transform’ means that eventually the message may arrive in a different ontology than the one used by the local client but necessarily a transformation to his own ontology must be possible. Eventually an agreement between the two parties for some additional, non-standard ontologies has to be made for a certain application.

It is supposed that the inference engine has enough power to deal with all (practically all) possible situations.

Then their might be the following scheme for an application using the technology discussed and partially implemented within this thesis:

Lay down the rules of the application in a standard rule language. One partner then sends a query to another partner. The inference engine interprets this query thereby using its set (sets) of ontological rules and then it produces an answer. The answer indeed might consist of statements that will be used by another software to produce actions within the recieving computer. What has to be done then? Establishing the rules and making an interface that can transform the response of the engine into concrete actions.

The semantics of this all lies in the interpretation by the inference engine of the ontological rule sets that it disposes of and their specific implementation by the engine and in the actions performed by the interface as a consequence of the engine’s responses. [USHOLD] Clearly the actions performed after a conclusion from the engine give place to a lot of possible standardisations. (A possible action might be: sending a SOAP message. Another might be: sending a mail).

What will push the Semantic Web are the enormous possibilities of automated interaction between communication partners created by the sole existence of the internet: companies, government, citizens. To say it simply: the whole thing is too interesting not to be done!

The standardisation of the Semantic Web and the development of a standard ontology and proof engines that can be used to establish trust on the web is a huge challenge but the potential rewards are huge too. The computers of companies and citizens will be able to make complex completely automated interactions freeing everybody from administrative and logistic burdens. A lot of software development remains to be done and will be done by software scientists and engineers.

The question will inevitable be raised whether this development is for the good or the bad. The hope is that a further, perhaps gigantesque, development of the internet will keep and enhance its potentialities for defending and augmenting human freedom.

1.2. Case study

1.2.1. Introduction

A case study can serve as a guidance to what we want to achieve with the Semantic Web. Whenever standards are approved they should be such that important case studies remain possible to implement. Discussing all possible application fields here would be out of scope for this thesis. However one case study can help to see the Semantic Web not as something theoretical but as directed to practice.

1.2.2. The case study

A travel agent in Antwerp has a client who wants to go to St.Tropez in France. There are rather a lot of possibilities for composing such a voyage. The client can take the train to France, or he can take a bus or train to Brussels and then the airplane to Nice in France, or the train to Paris then the airplane or another train to Nice. The travel agent explains the client that there are a lot of possibilities. During his explanation he gets an impression of what the client really wants. Fig.1.2. gives a schematic view of the case study.

[image: image21.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

Fig.1.2. A Semantic Web case study

He agrees with the client about the itinerary: by train from Antwerp to Brussels, by airplane from Brussels to Nice and by train from Nice to St. Tropez. This still leaves room for some alternatives. The client will come back to make a final decision once the travel agent has said him by mail that he has worked out some alternative solutions like price for first class vs second class etc...

Remark that the decision for the itinerary that has been taken is not very well founded; only very crude price comparisons have been done based on some internet sites that the travel agent consulted during his conversation with the client. A very cheap flight from Antwerp to Cannes has escaped the attention of the travel agent.

The travel agent will now further consult the internet sites of the Belgium railways, the Brussels airport and the France railways to get some alternative prices, departure times and total travel times.

Now let’s compare this with the hypothetical situation that a full blown Semantic Web should exist. In the computer of the travel agent resides a Semantic Web agent that has at its disposal all the necessary standard tools. The travel agent has a specialised interface to the general Semantic Web agent. He fills in a query in his specialised screen. This query is translated to a standardised query format for the Semantic Web agent. The agent consult his rule database. This database of course contains a lot of rules about travelling as well as facts like e.g. facts about internet sites where information can be obtained. There are a lot of ‘path’ rules: rules for composing an itinerary (for an example of what such rules could look like see: [GRAPH]. The agent contacts different other agents like the agent of the Belgium railways, the agents of the French railways, the agent of the airports of Antwerp, Brussels, Paris, Cannes, Nice etc...

With the information recieved its inference rules about scheduling a trip are consulted. This is all done while the travel agent is chatting with the client to detect his preferences. After some 5 minutes the Semantic Web agent gives the travel agent a list of alternatives for the trip; now the travel agent can immediately discuss this with his client. When a decision has been reached, the travel agent immediately gives his Semantic Web agent the order for making the reservations and ordering the tickets. Now the client only will have to come back once for getting his tickets and not twice. The travel agent not only has been able to propose a cheaper trip as in the case above but has also saved an important amount of his time.

1.2.3.Conclusions of the case study

That a realisation of such a system is interesting is evident. Clearly, the standard tools do have to be very flexible and powerful to be able to put into rules the reasoning of this case study (path determination, itinerary scheduling). All this rules have then to be made by someone. This can of course be a common effort for a lot of travel agencies.

What exists now? A quick survey learns that there are web portals where a client can make reservations (for hotel rooms). However the portal has to be fed with data by the travel agent. There also exist software that permit the client to manage his travel needs. But all that software has to be fed with information obtained by a variety of means, practically always manually.

A partial simulation namely the command of a ticket for a flight can be found in chapter 10 paragraph 8.
Chapter 2. The building blocks

2.1. Introduction

In this chapter a number of techniques are briefly explained. These techniques are necessary building blocks for the Semantic Web. They are also a necessary basis for inferencing on the web.

Readers who are familiar with some topics can skip the relevant explanations.

2.2.XML and namespaces

2.2.1. Definition

XML (Extensible Markup Language) is a subset of SGML (Standard General Markup Language). In its original signification a markup language is a language which is intended for adding information (“markup” information) to an existing document. This information must stay separate from the original hence the presence of separation characters. In SGML and XML ‘tags’ are used.

2.2.2. Features

There are two kinds of tags: opening and closing tags. The opening tags are keywords enclosed between the signs “<” and “>”. An example: <author>. A closing tag is practically the same, only the sign “/” is added e.g. </author>. With these elements alone very interesting datastructures can be built. An example of a book description:

<book>

 <title>

The Semantic Web

 </title>

 <author>

 Tim Berners-Lee

 </author>

</book>

As can be seen it is quite easy to build hierarchical datastructures with these elements alone. A tag can have content too: in the example the strings “The Semantic Web” and “Tim Berners-Lee” are content. One of the good characteristics of XML is its simplicity and the ease with which parsers and other tools can be built.

The keywords in the tags can have attributes too. The previous example could be written:

<book title=”The Semantic Web” author=”Tim Berners-Lee”></book>

where attributes are used instead of tags.

An important characteristic of XML is the readability. The aim is to use systems usable by computers but still understandable by humans though this may need some effort by those humans.

Though in the beginning XML was intended to be used as a vehicle of information on the internet it can be very well used in stand-alone applications too e.g. as the internal hierarchical tree-structure of a computer program . A huge advantage of using XML is the fact that it is standardized which means a lot of tools are available and what also means that a lot of people and programs can deal with it.

Very important is the hierarchical nature of XML. Expressing hierarchical data in XML is very easy and natural. This makes it a useful tool wherever hierarchical data are treated , including all applications using trees. XML could be a standard way to work with trees.

XML is not a language but a meta-language i.e. a language with as goal to make other languages (“markup” languages).

Everybody can make his own language using XML. A person doing this only has to follow the syntaxis of XML i.e. produce wellformed XML. However more constraints can be added to an XML language by using DTD’s and XML schema, thus producing valid XML documents. A valid XML document is one that is in accord with the constraints of a DTD or XML schema. To summarize: an XML language is a language that follows XML syntax and XML semantics. The XML language can be defined using DTD’s or XML schema.

If everybody creates his own language then the “tower-of-Babylon”-syndrome is looming. How is such a diversity in languages handled? This is done by using namespaces. A namespace is a reference to the definition of an XML language.

Suppose someone has made an XML language about birds. Then he could make the following namespace declaration in XML:

<birds:wing xmlns:birds=”http://birdSite.com/birds/”>

This statement is referring to the tag “wing” whose description is to be found on the site that is indicated by the namespace declaration xmlns (= XML namespace). Now our hypothetical biologist might want to use an aspect of the physiology of birds described however in another namespace:

<physiology:temperature xmlns:physiology=” http://physiology.com/xml/”>

By the semantic definition of XML these two namespaces may be used within the same XML-object.

<?xml version=”1.0” ?>
<birds:wing xmlns:birds=”http://birdSite.com/birds/”>

large

</birds:wing>

<physiology:temperature xmlns:physiology=” http://physiology.com/xml/”>

43

</physiology:temperature>

The version statement refers to the used version of XML (always the same).

XML gives thus the possibility of using more than one language in one object. What can a computer do with this? It can check the well-formedness of the XML-object. Then is a DTD or an XML-schema describing a language is available it can check the validity of the use of this language within the XML object. It cannot interprete the meaning of this XML-object at least not without extra programming. Someone can write a program (e.g. a veterinary program) that makes an alarm bell sound when the temperature of a certain bird is 45 and research on the site “http://physiology.com/ “ has indicated a temperature of 43 degrees Celsius.

2.3.URI’s and URL’s

2.3.1. Definitions

URI stands for Uniform Resource Indicator. A URI is anything that indicates unequivocally a resource.

URL stands for Uniform Resource Locator. This is a subset of URI. A URL indicates the access to a resource. URN refers to a subset of URI and indicates names that must remain unique even when the resource ceases to be available. URN stands for Uniform Resource Name. [ADDRESSING]

In this thesis only URL’s will be used.

2.3.2. Features

The following example illustrates a URI that are in common use.

[URI]:

 www.math.uio.no/faq/compression-faq/part1.html

Most people will recognize this as an internet address. It unequivocally identifies a web page. Another example of a URI is a ISBN number that unquivocally identifies a book.

The general format of an http URL is:

http://<host>:<port>/<path>?<searchpart>.

The host is of course the computer that contains the resource; the default port number is normally 80; eventually e.g. for security reasons it might be changed to something else; the path indicates the directory access path. The searchpart serves to pass information to a server e.g. data destinated for CGI-scripts.

When an URL finishes with a slash like http://www.test.org/definitions/ the directory definitions is addressed. This will be the directory defined by adding the standard prefix path e.g. /home/netscape to the directory name: /home/netscape/definitions.The parser can then return e.g. the contents of the directory or a message ‘no access’ or perhaps the contents of a file ‘index.html’ in that directory.

A path might include the sign “#” indicating a named anchor in an html-document. Following is the html definition of a named anchor:

<H2>The Semantic Web</H2>

A named anchor thus indicates a location within a document. The named anchor can be called e.g. by:

http://www.test.org/definition/semantic.html#semantic

2.4.Resource Description Framework RDF

RDF is a language. The semantics are defined by [RDF_SEMANTICS]; three syntaxes are known: XML-syntax, Notation 3 and N-triples. N-triples is a subset of Notation 3 and thus of RDF. [RDF Primer] .

Very basically RDF consist of triples: subject - predicate - object. This simple statement however is not the whole story; nevertheless it is a good point to start.

An example [ALBANY] of a statement is:

“Jan Hanford created the J. S. Bach homepage.”. The J.S. Bach homepage is a resource. This resource has a URI: http://www.jsbach.org/. It has a property: creator with value ‘Jan Hanford’. Figure 2.1. gives a graphical view of this.

Creator>

</Description>

[image: image1.wmf]RDF Graph

http://www.

jsbach

.org

Jan Hanford

has the creator

Resource

Property Type

Property Value

Fig.2.1. An example of a RDF relation.

In simplified RDF this is:

<RDF>

 <Description about= “http://www.jsbach.org”>

 <Creator>Jan Hanford</Creator>

 </Description>

</RDF>

However this is without namespaces meaning that the notions are not well defined. With namespaces added this becomes:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description about=”http://www.jsbach.org/”>

 <dc:Creator>Jan Hanford</dc:Creator>

 </rdf:Description>

</rdf:RDF>

 The first namespace xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#“ refers to the document describing the (XML-)syntax of RDF; the second namespace xmlns:dc=”http://purl.org/DC/” refers to the description of the Dublin Core, a basic ontology about authors and publications. This is also an example of two languages that are mixed within an XML-object: the RDF and the Dublin Core language.

There is also an abbreviated RDF syntax. The example above the becomes:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” xmlns:dc=”http://purl.org/DC/”>

 <rdf:Description about=”http://www.jsbach.org/” dc:Creator=”Jan Hanford”>

 </rdf:Description>

</rdf:RDF>

In the following example is shown that more than one predicate-value pair can be indicated for a resource.

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:bi=”http://www.birds.org/definitions/”>

 <rdf:Description about= “http://www.birds.org/birds#swallow”>

 <bi:wing>pointed</bi:wing>

 <bi:habitat>forest</bi:habitat>

 </rdf:Description>

</rdf:RDF>

or in abbreviated form:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:bi=”http://www.birds.org/definitions/”>

 <rdf:Description about=”http://www.birds.org/birds#swallow“ bi:wing=”pointed” bi:habitat=“forest”>

 </rdf:Description>

</rdf:RDF>

Other abbreviated forms exists but this is out of scope for this thesis.

Conclusion
What is RDF? It is a language with a simple semantics consisting of triples: subject – predicate – object and some other elements. Several syntaxes exist for RDF: XML, graph, Notation 3. Notwithstanding its simple structure a great deal of information can be expressed with it.

2.5.Notation 3

2.5.1. Introduction

Notation 3 is a syntaxis for RDF developed by Tim Berners-Lee and Dan Connolly and represents a more human usable form of the RDF-syntax with in principle the same semantics [RDF Primer]. Most of the test cases used for testing my engine are written in Notation 3. An alternative and shorter name for Notation 3 is N3. I always use the Notation 3 syntax for RDF.

2.5.2. Basic properties

The basic syntactical form in Notation 3 is a triple of the form :

<subject> <verb> <object> where subject, verb and object are atoms. An atom can be either a URI (or a URI abbreviation) or a variable. But some more complex structures are possible and there also is some “ syntactic sugar”. Verb and object are also called property and value which is anyhow the semantical meaning.

In N3 URI’s can be indicated in a variety of different ways. A URI can be indicated by its complete form or by an abbreviation. These abbreviations have practical importance and are intensively used in the testcases. In what follows the first item gives the complete form; the others are abbreviations.

· <http://www.w3.org/2000/10/swap/log#log:forAll> : this is the complete form of a URI in Notation 3. This ressembles very much the indication of a tag in an HTML page.

· xxx: : a label followed by a ‘:’ is a prefix. A prefix is defined in N3 by the @prefix instruction :

@prefix ont: <http://www.daml.org/2001/03/daml-ont#>.

This defines the prefix ont: . After the label follows the URI represented by the prefix.

So ont:TransitiveProperty is in full form <http://www.daml.org/2001/03/daml-ont#TransitiveProperty> .
· <#param> : Here only the tag in the HTML page is indicated. To get the complete form the default URL must be added.the complete form is : <URL_of_current_document#param>.

The default URL is the URL of the current document i.e. the document that contains the description in Notation 3.

· <> or <#>: this indicates the URI of the current document.

· : : a single double point is by convention referring to the current document. However this is not necessarily so because this meaning has to be declared with a prefix statement :

@prefix : <#> .

Two substantial abbreviations for sets of triples are property lists and object lists. It can happen that a subject recieves a series of qualifications; each qualification with a verb and an object,

e.g. :bird :color :blue; height :high; :presence :rare.

This represents a bird with a blue color, a high height and a rare presence.

These properties are separated by a semicolon.

A verb or property can have several values e.g.

:bird :color :blue, yellow, black.

This means that the bird has three colors. This is called an object list. The two things can be combined :

:bird :color :blue, yellow, black ; height :high ; presence :rare.

The objects in an objectlist are separated by a comma.

A semantic and syntactic feature are anonymous subjects. The symbols ‘[‘ and ‘]’ are used for this feature. [:can :swim]. means there exists an anonymous subject x that can swim. The abbreviations for propertylist and objectlist can here be used too :

[:can :swim, :fly ; :color :yellow].

Some more syntactic sugar must be mentioned.

:lion :characteristics :mammal.

can be replaced by:

:lion has :characteristics of :mammals.

The words “has” and “of” are just eliminated by the parser.

:lion :characteristics :mammals.

can be replaced by:

:mammals is :characteristics of :lion.

Again the words “is” and “of” are just eliminated; however in this case subject and object have to be interchanged.

The property rdf:type can be abbreviated as “a”:

:lion a :mammal.

really means:

:lion rdf:type :mammal.

The property owl:equivalentTo can be abbreviated as “=”, e.g.

:daml:EquivalentTo = owl:equivalentTo.

meaning the semantic equivalence of two notions or things.

This notion of equality probably will become very important in future for assuring interoperability between different systems on the internet: if A uses term X meaning the same as term Y used by B, this does not matter if this equivalence can be expressed and found.

2.6.The logic layer

In [SWAPLOG] an experimental logic layer is defined for the Semantic Web. I will say a lot more about logic in chapter 6. An overview of the most salient features (my engine only uses log:implies, log:forAll, log:forSome and log:Truth):

log:implies : this is the implication.

{:rat a :rodentia. :rodentia a :mammal.} log:implies {:rat a :mammal}.

log:forAll : the purpose is to indicate universal variables :

this log:forAll :a, :b, :c.

indicates that :a, :b and :c are universal variables.

The word this stands for the scope enveloping the formula. In the form above this is the whole document. When between bracelets it is the local scope: see [PRIMER]. In this thesis this is not used.

log:forSome: does the same for existential variables.

this log:forSome :a, :b, :c.

log:Truth : states that this is a universal truth. This is not interpreted by my engine.

Here follow briefly some other features:

log:falseHood : to indicate that a formula is not true.

log:conjunction : to indicate the conjunction of two formulas.

log:includes : F includes G means G follows from F.

log:notIncludes: F notIncludes G means G does not follow from F.

2.7.Semantics of N3

2.7.1. Introduction

The semantics of N3 are the same as the semantics of RDF [RDFM].

The semantics indicate the correspondence between the syntactic forms of RDF and the entities in the universum. When an information problem is analyzed and the problem is represented with statements in Notation 3, it is the semantic model that determines the semantic meaning of the Notation 3 statements. This is true for all testcases.

2.7.2. The model

The vocabulary V of the model is composed of a set of URI’s.

LV is the set of literal values and XL is the mapping from the literals to LV.

A simple interpretation I of a vocabulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of I.

2. A mapping IEXT from IR into the powerset of IR x (IR union LV) i.e. the set of sets of pairs <x,y> with x in IR and y in IR or LV. This mapping defines the properties of the RDF triples.

3. A mapping IS from V into IR
IEXT(x) is a set of pairs which identify the arguments for which the property is true, i.e. a binary relational extension, called the extension of x. [RDFMS]

Informally this means that every URI represents a resource which might be a page on the internet but not necessarily: it might as well be a physical object. A property is a relation; this relation is defined by an extension mapping from the property into a set. This set contains pairs where the first element of a pair represents the subject of a triple and the second element of a pair represent the object of a triple. With this system of extension mapping the property can be part of its own extension without causing paradoxes. This is explained in [RDFMS].

2.7.3. Examples

Take the triple:

:bird :color :yellow.

In the set of URI’s there will be things like: :bird, :mammal, :color, :weight, :yellow, :blue etc...These are part of the vocabulary V.

In the set IR of resources will be: #bird, #color etc.. i.e. resources on the internet or elsewhere. #bird might represent e.g. the set of all birds. These are the things we speak about.

There then is a mapping IEXT from #color (resources are abbreviated) to the set {(#bird,#blue),(#bird,#yellow),(#sun,#yellow),...}

and the mapping IS from V to IR:

:bird (#bird, :color (#color, ...

The URI refers to a page on the internet where the domain IR is defined (and thus the semantic interpretation of the URI).

Chapter 3. A global view of the Semantic Web

3.1. Introduction.

The Semantic Web will be composed of a whole series of standards. These standards have to be organised into a certain structure that is an expression of their interrelationships. A suitable structure is a hierarchical, layered structure.

3.2. The layers of the Semantic Web

Fig.3.1. illustrates the different parts of the Semantic Web in the vision of Tim Berners-Lee. The notions are explained in an elementary manner here. Later some of them will be treated more in depth.

Layer 1. Unicode and URI

 At the bottom there is Unicode and URI. Unicode is the Universal code.

[image: image2.png]Trust

nules. Proof
data " Digital
Ontology vocabulary Sigreiurs
selfdescriptive
document RDF + rdfschema

XML + NS + xmischema

Fig.3.1. The layers of the Semantic Web [Berners-Lee]

Unicode codes the characters of all the major languages in use today.[UNICODE]. There are three formats for encoding unicode characters. These formats are convertible one into another.

1) in UTF-8 character size is variable. Ascii characters remain unchanged when transformed to UTF-8.

2) In UTF-16 the most frequently used characters use 2 bytes, while others use 4 bytes.

3) In UTF-32 all characters are encoded in 4 bytes.

URI’s are Universal Resource Indicators. With a URI some”thing” is indicated in a unique and universal way. An example is an indication of an e-mail by the concatenation of email address and date and time.

Layer 2. XML, namespaces and XML Schema

See chapter 2 for a description of XML.

Layer 3. RDF en RDF Schema

The first two layers consist of basic internet technologies. With layer 3 the Semantic Web begins. RDF has as its main goal the description of data.

RDF stands for Resource Description Framework.

RDF Schema (rdfs) has as a purpose the introduction of some basic ontological notions. An example is the definition of the notion “Class” and “subClassOf”.

Layer 4. The ontology layer

The definitions of rdfs are not sufficient. A more extensive ontological vocabulary is needed. This is the task of the Web Ontology workgroup of the W3C who has defined already OWL (Ontology Web Language) and OWL Lite (a subset of OWL).

Layer 5. The logic layer

In the case study the use of rulesets was mentioned. For expressing rules a logic layer is needed. An experimental logic layer exists [SWAP/CWM]. This layer is treated in depth in this thesis.

Layer 6. The proof layer

In the vision of Tim Berners-Lee the production of proofs is not part of the Semantic Web. The reason is that the production of proofs is still a very active area of research and it is by no means possible to make a standardisation of this. A Semantic Web engine should only need to verify proofs. Someone sends to site A a proof that he is authorised to use the site. Then site A must be able to verify that proof. This is done by a suitable inference engine. Three inference engines that use the rules that can be defined with this layer are: CWM [SWAP/CWM] , Euler [DEROO] and RDFEngine developed as part of this thesis.

Layer 7. The trust layer

Without trust the Semantic Web is unthinkable. If company B sends information to company A but there is no way that A can be sure that this information really comes from B or that B can be trusted then there remains nothing else to do but throw away that information. The same is valid for exchange between citizens. The trust has to be provided by a web of trust that is based on cryptographic principles. The cryptography is necessary so that everybody can be sure that his communication partners are who they claim to be and what they send really originates from them. This explains the column “Digital Signature” in fig. 3.1.

The trust policy is laid down in a “facts and rules” database. This database is used by an inference engine like the inference engine I developed. A user defines his policy using a GUI that produces a policy database. A policy rule might be e.g. if the virus checker says ‘OK’ and the format is .exe and it is signed by ‘TrustWorthy’ then accept this input.

The impression might be created by fig. 3.1 that this whole layered building has as purpose to implement trust on the internet. Indeed it is necessary for implementing trust but, once the pyramid of fig. 3.1 comes into existence, on top of it all kind of applications can be built.

Layer 8. The applications

This layer is not in the figure; it is the application layer that makes use of the technologies of the underlying 7 layers. An example might be two companies A and B exchanging information where A is placing an order with B.

Chapter 4. Description of the research question.

4.1. The problem

Up till now several inference engines have been made that work with RDF en RDFS. Some of these just do subgraph matching on a RDF graph; others also use rules and logical implication. The logic behind the rules is often based on Horn logic [DECKER]. CWM is based on forward reasoning. [SWAP/CWM]. These systems are of diverse nature and the logic behind them is not clear.

More theoretical results are needed before a standard defining the basic logic structure of an inference engine can be defined. These theoretical results must be based on pratical and experimental work.

In my view the following restrictions are imposed by the structure of the internet:

· the data are distributed. A consequence of this is the difficulty to avoid inconsistencies.

· heterogeneity of goals and purposes must be taken into account.

· there is a relatively slow transmission medium.

· the scale of everything can vary from small to extensive.

Other arguments influence also the structure of an inference engine for the Semantic Web. First there is the argument of evolvability (a general requirement for software development: see [GHEZZI]). The internet is not something static neither is the Semantic Web. So an inference engine deployed on the scale of the internet will be confronted with continuous development and changes. There is the argument of variability. In a system with millions of users it is to be expected that not all user communities have the same needs and look for the same properties in an inference engine. This implies that the engine must be built in a modular way. This again leads to the development of a basic engine which is kept as small as possible. This basic engine is enhanced with a set of logic specifications comprising facts and rules. However there has to be a formal specification of the engine too. Such a specification can be made with a functional language.

What can be the architecture of an inference engine for the Semantic Web?

When a system on internet scale is involved, some assumptions concerning logic can readily be made:

· no closed world: when files are collected and merged on the internet it is not to be expected that the information will be complete.

· paraconsistent logics: when there are contradictions,strange results would happen if the rule is accepted that from a contradiction everything can be deduced.

· reasoning should be monotonic.

What system of logic is best suited for the Semantic Web?

A basic internet engine should be fast because the amount of data can be high; it is possible that data need to be collected from several sites over the internet. This will already imply an accumulation of transmission times. A basic engine should be optimized as much as possible.

What techniques can be used for optimization of the engine?

I said above that inconsistencies will arise. In a closed world (reasoning on one computer system) inconsistencies can be mastered; on the internet, when files from several sites are merged, inconsistencies will be commonplace.

How must inconsistencies be handled?

4.2. The solution framework

In order to give an answer to these questions the framework in fig. 4.1 was used.

[image: image3.png]Logic reasoning rules
(meta rules) N3

N3 axioms

N3 Query

v

Basic engine

Y

N3 Proof

Fig.4.1. The solution framework.

By specifying a basic engine research can be done about the properties of RDF using the concrete syntax Notation 3. The engine uses as input an axiom file, a query file and one or more basic files with are reasoning rules governing the behaviour of the engine. The axiom file and the query file are application dependent.

The engine is specified in Haskell. It uses resolution reasoning. Other engines are of course possible and should be investigated, but this is out of scope for this thesis.

Chapter 5. The graph model of RDF and distributed inferencing.

5.1. Introduction

In chapter 3 RDF is described from the point of view of the data model. This chapter will focus on the graph model of RDF as described in the RDF model theory [RDFM]. Examples of coding in Haskell will also be given.

I will present in this chapter an interpretation that is based on graph theoretical reasoning. A clear and well defined definition will be given for rules, queries and solutions i.e. a definition that permits to check the validity of solutions. It also gives guidelines as to what constitute well constructed rules. I present a series of lemmas to prove the validity of the resolution process as it is implemented in the engine of De Roo [DEROO] and the engine developed for this thesis, RDFEngine. The anti-looping mechanism from De Roo is explained and its validity is proved.

A model of distributed inferencing is presented. A client starts a query on a server. The server in its turn can direct sub-queries to another server. The secondary server return results to the main server. The results are returned in a verifiable standard format based on forward reasoning. It does not matter which specific inferencing method is used on the secondary server. The main server accepts or rejects the results. If accepted inferencing continues.

5.2.Recapitulation and definitions

I give a brief recapitulation of the most important points about RDF. [RDFM,RDF Primer, RDFSC].

RDF is a system for expressing meta-information i.e. information that says something about other information e.g. a web page. RDF works with triples. A triple is composed of a subject, a property and an object. Subject, property and object can have as value a URI or a variable. An object can also be a literal.

In the graph representation subjects and objects are nodes in the graph and the arcs represent properties. No nodes can occur twice in the graph. The consequence is that some triples will be connected with other triples; other triples will be alone. Also the graph will have different connected subgraphs.

A node can also be an blank node. A blank node can be instantiated with a URI or a literal and then becomes a ‘normal’ node.

A valid RDF graph is a graph where all arcs are valid URI’s and all nodes are either valid URI’s, valid literals, blank nodes (= variables) or triplesets .

A tripleset is a set of connected triples i.e. triples that have at least one node in common. Therefore a tripleset is also a connected subgraph. The RDF graph is the set of all triplesets. Rules are triples too.

Triples will be noted as: (subject, property, object). A tripleset will consist of triples between ‘{‘ and ‘}’.

Fig.5.1 gives examples of triples.

[image: image4.png]2 CD e G
o mark.

b)

mark.
- - e

Fig.5.1. Some RDF triples. The triples in a) together form the graph in b). A graph cannot have duplicate nodes.

Triples can be ‘stand-alone’ or they can form a graph. The first triple says that John owns a car and the second says that there is a car with brand Ford. The third drawing however is composed of two triples (and is thus a triple set) and it says that John owns a car with brand Ford.

I give here the Haskell representation of triples

(Note: the Haskell code in the text is simplified compared to the source code in annexe).

data Triple = Triple (Subject, Predicate, Object) | TripleNil

type Subject = Resource

type Predicate = Resource

type Object = Resource

data Resource = URI String | Literal String | Var Vare | TripleSet | ResNil

type TripleSet = [Triple]

-- the definition of a variable

data Vare = UVar String | EVar String | GVar String | GEVar String

Rules are triples of which the subject and object are formed by triplesets. The interpretation of variables and rules will be explained in following paragraphs.

Suppose fig.5.1 represents the RDF graph. Now let’s make a query. A query is made when someone wants to know something. A person wants to know whether certain triples are in the database. She wants to know e.g. if John owns a car or she wants to know all persons who own a car (and are in the database).

The first query is: {(John, owns,car)}.

The second query is: {(?who, owns,car)}.

This needs some definitions:

A single query is a tripleset. Semantically a query is an interrogation of the database. A query can be composed and exists then of a set of triplesets called the query set. It is then a RDF graph with an empty ruleset. When the inferencing starts the query set becomes the goallist. The goal set is the collection of triplesets that have to be proved i.e. matched against the database. This process will be described in detail later.

The answer to a query consists of one or more solutions. A solution to a query is either an affirmation that a certain triple or set of triples exists; or else it is the original query with the variables replaced by URI’s or literals. I will later give a more precise definition of solutions.

 A variable will be indicated with a question mark. For this chapter it is assumed that the variables are of type UVar i.e. local universal variables. The types are UVar for a local, universal variable; Evar for a local, existential variable; Gvar for a global, universal variable; GEVar for a global, existential variable.

A grounded triple is a triple of which subject, property and object are URI’s or literals, but not variables. A grounded tripleset contains only grounded triples.

A query can be grounded. In that case an affirmation is sought that the triples in the query exist, but not necessarily in the database: they can be deduced using rules.

Fig.5.2 gives the representation of some queries.

In the first query the question is: who owns the car ‘car’? The answer is of course “John”. In the second query the question is: what is the brand of the car ‘car’? The third query however asks: who owns the car ‘car’ and what is the brand of that car?

Here the query is a graph containing variables. This graph has to be matched with the graph in fig.5.1. So generally for executing a RDF query what has to be done is ‘subgraph matching’.

Following the data model for RDF the two queries are in fact equal because a sequence of triples is implicitly a conjunction. Fig.5.2 illustrates this. [image: image5.png]b)

“2who

owns

. - .
o = @

- — @

Fig.5.2. Some RDF queries. The query in a) is composed of two triples and forms thus a tripleset. This tripleset is equivalent to the graph in b).

[image: image6.png]. - .

o = e
o = @

owns mark

BMWw

Ford

()

Fig. 5.3.A semantic error in a sequence of RDF triples.

Through the implicit conjunction the first two triples have to be joined together in one subgraph. Though this is a valid RDF graph it probably is not the intention of the author of the triples. John’s car cannot have two different brands.

The variables in a query are replaced in the matching process by a URI or a literal. This replacement is called a substitution. It is a tuple (variable, URI) or (variable, literal). I will come back on substitutions later.

Suppose there exists a rule: if X owns a car then X must pay taxes. How to represent such a rule ? Fig.5.4 gives a graph representation of a rule.

[image: image7.png]Antecedent(s)

. - .

° must_pay

implies

Consequent

Fig.5.4. A graph representation of a rule. An arrow is drawn to indicate a logical implication.

The nodes of the rule form a triple set. Here there is one antecedent but there could be more. There is only one consequent. Fig.5.5 gives a query that will match with the consequent of the rule.

[image: image8.png]must_pay H

Fig. 5.5. A query that matches with a rule.

The desired answer is of course: John must pay taxes. The query of fig.5.5 is matched with the consequent of the rule in fig.5.4. Now an action has to be taken: the antecedents of the rule now become the new query. The variable ?x is replaced by the variable ?who and the new query is now: who owns a car? This is equal to a query described earlier. Important is that a rule subgraph is treated differently from non-rule subgraphs.

This way of representing rules is very close to the way prolog represents rules e.g. must_pay(X,taxes) := owns(X,car). The rule exists here of a consequent (the first part) and an antecedent (the second part after the ‘:=’). This interpretation of rules is not very satisfactory for RDF. I will later give another interpretation of rules that is better suited for interpreting the inference process. Now I give the definition:

A rule is a triple. Its subject is a tripleset containing the antecedents and its object is a tripleset containing the consequents. The property of the rule is the URI : http://www.w3.org/2000/10/swap/log# implies. [SWAP] . I will give following notation for a rule:

{triple1, triple2,…} implies {triple11,triple21,….}

For a uniform handling of rules and other triples the concept statement is introduced in the abstract Haskell syntax:

type Statement = (TripleSet, TripleSet,String)

type Fact = Statement -- ([],Triple,String)

type Rule = Statement

In this terminology a rule is a statement. The first tripleset of a rule is called the antecedents and the second tripleset is called the consequents. A fact is a rule with empty antecedents. The string part in the statement is the provenance information. It indicates the origin of the statement.

5.3. The basic structure of RDFEngine

5.3.1. The ADTs and mini-languages

A RDF graph is a set of statements. It is represented in Haskell by an Abstract Data Type: RDFGraph.hs.

data RDFGraph = RDFGraph (Array Int Statement, Dict, Params)

The statements composing the graph are in an array. The elements Dict and Params in the type RDFGraph constitute a dictionary or hashtable.
A predicate is associated with each statement. This is the predicate of the first triple of the second tripleset of the graph. An entry into the dictionary has as a key a predicate name and a list of numbers. Each number refers to an entry in the array associated with the RDFGraph.

Example: Given the triple (a,b,c) that is entry number 17 in the array, the entry in the dictionary with key ‘b’ will give a list of numbers […,17,…]. The other numbers will be triples or rules with the same predicate.

The ADT is accessed by means of a mini-language defined in the module RDFML.hs. This mini-language contains commands for manipulating triples, statements and RDF Graphs. Fig. 5.2. gives an overview of the mini-language.

	description of the Mini Language for RDF Graphs

	 for the Haskell data types see: RDFData.hs

	

	triple :: String -> String -> String -> Triple

	triple s p o : make a triple

	

	nil :: Triple

	nil : get a nil triple

	

	tnil :: Triple -> Bool (tnil = test (if triple) nil)

	tnil : test if a triple is nil

	

	s :: Triple -> Resource (s = subject)

	s t : get the subject of a triple

	

	p :: Triple -> Resource (p = predicate)

	p t : get the predicate of a triple

	

	o :: Triple -> Resource (o = object)

	o t : get the object of a triple

	

	st :: TripleSet -> TripleSet -> Statement (st = statement)

	st ts1 ts2 : make a statement with two triplesets

	

	stnil :: Statement (stnil = statement nil)

	stnil : get a nil statement

	

	tstnil :: Statement -> Bool (tstnil = test if statement nil)

	tstnil : test if a statement is nil

	

	trule :: Statement -> Bool (trule = test (if) rule)

	trule st = test if the statement st is a rule

	

	tfact :: Statement -> Bool (tfact = test (if) fact)

	tfact st : test if the statement st is a fact

	

	stf :: TripleSet -> TripleSet -> String -> Statement (stf = statement full)

	stf ts1 ts2 n : make a statement where the Int indicates the specific graph.

	 command 'st' takes as default graph 0

	

	protost :: String -> Statement (protost = (RDF)prolog to statement)

	protost s : transforms a predicate in RDFProlog format to a statement

	 example: "test(a,b,c)."

	

	sttopro :: Statement -> String (sttopro = statement to (RDF)prolog)

	sttopro st : transforms a statement to a predicate in RDFProlog format

	

	ants :: Statement -> TripleSet (ants = antecedents)

	ants st : get the antecedents of a statement

	

	cons :: Statement -> TripleSet (cons = consequents)

	cons st : get the consequents of a statement

	

	fact :: Statement -> TripleSet

	fact st : get the fact = consequents of a statement

	

	tvar :: Resource -> Bool (tvar : test variable)

	tvar r : test whether this resource is a variable

	

	tlit :: Resource -> Bool (tlit = test literal)

	tlit r : test whether this resource is a literal

	

	turi :: Resource -> Bool (turi = test uri)

	turi r : test whether this resource is a uri

	

	grs :: Resource -> String (grs = get resource (as) string)

	grs r : get the string value of this resource

	

	gvar :: Resource -> Vare (gvar = get variable)

	gvar r : get the variable from the resource

	

	graph :: TripleSet -> Int -> String -> RDFGraph

	graph ts n s : make a numbered graph from a triple store.

	 the string indicates the graph type: predicate 'gtype(s)'

	 the graph number is as a string in the predicate:

	 'gnumber("n")'

	

	agraph :: RDFGraph -> Int -> Array Int RDFGraph -> Array Int RDFGraph

	agraph g n graphs : add a RDF graph to an array of graphs at position

	 n. If the place is occupied by a graph, it will be

	 overwritten. Limited number of entries by parameter maxg.

	

	maxg defines the maximum number of graphs

	maxg :: Int

	maxg = 5

	

	pgraph :: RDFGraph -> String (pgraph = print graph)

	pgraph : print a RDF graph in RDFProlog format

	

	pgraphn3 :: RDFGraph -> String (pgraphn3 = print graph in Notation 3)

	pgraphn3 : print a RDF graph in Notation 3 format

	

	cgraph :: RDFGRaph -> String (cgraph = check graph)

	cgraph : check a RDF graph. The string contains first the listing of the original triple store in

	 RDF format and then all statements grouped by predicate. The two listings

	 must be identical

	

	apred :: RDFGraph -> String -> [String] -> RDFGraph (apred = add predicate)

	apred g p [t] : add a predicate of arity (length t). g is the rdfgraph, p is the

	 predicate and [t] are the terms.

	

	astg :: RDFGraph -> Statement -> RDFGraph (astg = add statement to graph)

	astg g st : add statement st to graph g

	

	dstg :: RDFGraph -> Statement -> RDFGraph (dstg = delete statement from graph)

	dstg g st : delete statement st from the graph g

	

	gpred :: RDFGraph -> String -> [Statement] (gpred = get predicate)

	grped g p : get the list of all statements from graph g with predicate p

	

	gpredv :: RDFGraph -> String -> [Statement] (gpredv = get predicate and variable (predicate))

	gpredv g p : get the list of all statements from graph g with predicate p

	 and with a variable predicate.

Fig. 5.6. The mini-language for manipulating triples, statements and RDF graphs.

A RDF server can have several RDF graphs. This constitutes a modular structure. The inferencing process uses a list of graphs. Graphs can be loaded and unloaded. The inferencing is done over all loaded graphs.

An inference step is the matching of a statement with the set of RDF graphs. An inference step uses a data structure InfData:

data InfData = Inf {graphs::Array Int RDFGraph, goals::Goals, stack::Stack,

 lev::Level, pdata::PathData, subst::Subst,

 sols::[Solution], ml::MatchList}

This data structure is described in an Abstract Data Structure InfADT.hs (fig.5.7). It illustrates how complex data structures can easily be handled in Haskell using field labels. For instance, to get access to the stack, the instruction:

stackI = stack inf where inf is an instance of InfData, can be used.

This is a complex data structure. Its acess is further simplified by access routines in the ADT like e.g. sstack: show the contents of the stack in string format.

The elements of the data structure are :

Array Int RDFGraph: The array containing the RDF graphs.

Goals: The list of goals that have to be proved.

Stack: The stack needed for backtracking.

Level: The inferencing level. This is needed for renumbering the variables and backtracking.
PathData: A list of the statements that have been unified. This is used to establish the proof of the solutions.

Subst: The current substitution. This substitution must be applied to the current goal.

[Solution]: The list of the solutions.

data InfData = Inf {graphs::Array Int RDFGraph, goals::Goals, stack::Stack,

 lev::Level, pdata::PathData, subst::Subst,

 sols::[Solution], ml::MatchList}

* Array Int RDFGraph: this is the array of RDF graphs

* Goals: this is the list of goals. The format is:

 type Goals = [Statement]

* Stack: the stack contains all data necessary for backtracking. The format is:

 data StackEntry = StE {sub::Subst, fs::FactSet, sml::MatchList}

 type Stack = [StackEntry]

The stack is a list of triples. The first element in the triple is a substitution. The second element is a list of facts:

 type FactSet = [Statement]

The third element is a list of matches. A match is a triple and is the result of matching two statements:

 type MatchList = [Match]

 data Match = Match {msub::Subst, mgls::Goals, bs::BackStep}

Matching two statements gives a substitution, a list of goals (that may be empty) and a backstep. A backstep is nothing else than a tuple formed by the two matched statements:

 type BackStep = (Statement, Statement)

The purpose of the backstep is to keep a history of the unifications. This will serve for constructing the proof of a solution when it has been found.

* Level: an integer indicating the backtacking level.

* PathData: this is a list of tuples.

 data PDE = PDE {pbs::BackStep, plev::Level}

 type PathData = [PDE]

 The pathdata forms the history of the occurred unifications. The level is kept also for backtracking.

* Subst: the current substitution

* [Solution]: the list of the solutions. A solution is a tuple:

 data Solution = Sol {ssub::Subst, cl::Closure}

A solution is formed by a substitution and a closure. A closure is a list of forward steps. A forward step is a tuple of statements. The closure is the proof of the solution. It indicates how the result can be obtained with forward reasoning. It contains the statements and the rules that have to be applied to them.

 type ForStep = (Statement,Statement)

 type Closure = [ForStep]

* MatchList: the type is explained above. The function choose needs this parameter for selecting new goals.

5.7. The data structure needed for performing an inference step.

5.3.2. Mechanisms

The program is organised around a basic IO loop with the following structure:

1) Get a command from the console or a file; in automatic mode, this is a null command.

2) Read a clause.

3) Call an API or execute a builtin or do an inference step.

4) Show or print results, eventually in a trace file.

Fig. 5.10 gives a view of the help function.

The API permits to add builtins. Builtins are statements with special predicates that are handled by specialized functions. An example might be a ‘print’ predicate that performs an IO.

An inference step has as only input an instantiation of InfData and as only output an instantiation of InfData. The data structure contains all the necessary information for the next inference step. In RDFEngine an inference step corresponds to the execution of one unification of a statement with the database or the execution of a query directed to another database.

The inference step is the inferencing unit in a distributed inferencing environment. See also chapter 7 paragraph 4: the inference web [MCGUINESS2003]. The inference web defines a format based on DAML/OIL. Here a simpler format is used.

Another mini-language for inferencing is defined in module InfML.hs.

It is shown in fig. 5.9.

A query can be directed to a secondary server. This is done by using the predicate “query”. In notation3 the format is [:query “server”] where “server” is the name of the server. All goals after the goal with predicate “query” and before a goal with predicate “end_query” will compose the query. This query is sent to the secondary server that returns a failure or a set of solutions. A solution is a substitution plus a proof. In this step a call to the trust system could be made as well on the primary server as on the secondary server. The primary server can eventually proceed by doing a verification of the proof. Then the returned results are added to the datastructure InfData of the primary server who proceeds with the inference process.

Description of the Mini Language for inferencing

For the Haskell data types: see RDFData.hs

esub :: Vare -> Resource -> ElemSubst (esub = elementary substitution)

esub v t : define an elementary substitution

apps :: Subst -> Statement -> Statement (apps = apply susbtitution)

apps s st : apply a susbtitution to a statement

appst :: Subst -> Triple -> Triple (appst = apply substitution (to) triple)

appst s t : apply a substitution to a triple

appsts :: Substitution -> TripleSet (appsts = apply substitution (to) tripleset)

appsts s ts : apply a substitution to a tripleset

unifsts :: Statement -> Statement -> Maybe Match (unifsts = unify statements)

unifsts st1 st2 : unify two statements giving a match

 a match is composed of: a substitution,

 the returned goals or [], and a backstep.

gbstep :: Match -> BackStep (gbstep = get backwards (reasoning) step

gbstep m : get the backwards reasoning step (backstep) associated with a match.

 a backstep is composed of statement1 and statement 2 of the match

 (see unifsts)

convbl :: [BackStep] -> Substitution -> Closure (convbl = convert a backstep list)

convbl bl sub : convert a list of backsteps to a closure using the substitution sub

gls :: Match -> [Statement] (gls = goals)

gls : get the goals associated with a match

gsub :: Match -> Substitution (gsub = get substitution)

gsub m : get the substitution from a match

Fig. 5.9. The mini-language for inferencing

Enter command (? for help):

?

h : help

? : help

q : exit

s : perform a single inference step

g : go; stop working interactively

m : menu

e : execute menu item

qe : enter a query Enter command (? for help):
Fig.5.10. The interactive interface.

This mechanism defines an interchange format between inferencing servers. The originating server sends a query, consisting of a tripleset with existential and universal variables. Those variables can be local (scope: one triple) or global (scope: the whole triple). The secondary server returns a solution: if not empty, it consists of the query with at least one variable substituted and of a proof. See fig. 5.7. for the exact format of the solution. The primary server is not concerned with what happens at the secondary server. The secondary server does not even need to work with RDF, as long as it returns a solution in the specified format.

Clearly, this call on a secondary server must be done with care. In a recursive procedure this can easily lead to a kind of spam, thereby overloading the secondary server with messages.

A possibility for reducing the traffic consists in storing the results of the query in a rule with the format: {query}log:implies{result}. Then whenever the query can be answered using the rule, it will not be sent anymore to the secondary server. This constitutes a kind of learning process.

This mechanism can also be used to create virtual servers on one system, thereby creating a modular system where each “module” is composed of several RDF graphs. Eventually servers can be added or deleted dynamically.

5.3.3. Conclusion

The basic IO loop and the definition of the inferencing process on the level of one inference step makes a highly modular structure possible. It enables also, together with the interchange format, the possiblility to direct queries to other servers by use of the ‘query’ and ‘end_query’ predicates.

The use of ADT’s and mini-languages makes the program robust because changes in data structures are encapsulated by the mini-languages.

The basic IO loop makes the program extensible by giving the possibility of adding builtins and doing IO’s in those builtins.

5.4.Languages needed for inferencing

5.4.1.Introduction

Four languages are needed for inferencing [HAWKE] :

1) assertions: these are just a set of RDF triples

2) rules: a set of composed triples

3) queries: a set of triples

4) results: this are the results of the query. In this thesis they are expressed in an RDF syntax and are thus graphs too.

These are really different languages though they are all graphs. The reason is that there are differences between them about what is syntactically permitted, about the interpretation of the variables and, generally, about the operational use.

These languages differ in syntax and semantics. The query language presented in this thesis is a rather simple query language, for a standard engine on the World Wide Web something more complex will be needed.

5.3.2.Interpretation of variables

I will explain here what the RDFEngine does with variables in each kind of language:

There are 5 kinds of variables:

1) local universal variables

2) local existential variables

3) global universal variables

4) global existential variables

5) anonymous nodes

Overview per language:

1) assertions:

local means here: within the assertion.

local existential variables are instantiated with a unique special identifier.

If the same name is used in two assertions two identifiers will be created.

global existential variables: these are instantiated with a unique special identifier. If the same name is used in two assertions only one identifier is used.

local and global universal variables: they rest unchanged and are marked as what they are.

anonymous nodes: are treated as local or global existential variables depending on the way they are syntactically represented.

In a way, assertions containing universal variables are like rules in the sense that the variables may be replaced with URI’s and a triple can be generated and added to the closure graph.

2) rules:

local means: within the rule.

as in 1). If the consequent contains more variables as the antecedent then these have to be anonymous nodes or existential variables.

3) queries:

local means: within an assertion (triple) of the query; global means: within the query graph.

anonymous nodes: are treated as local or global existential variables depending on the way they are syntactically represented.

All other variables are marked in the abstract syntax as indicated in the concrete syntax.

5.4.3.Variables and unification

In the unification all variables are treated in exactly the same way. A variable in the query matches with a variable or a uri in an assertion or a rule. Remember however that during unification existential variables do not exist anymore as they have been instantiated by a unique special URI. Also all variables have received a unique identifier.

A URI in the query matches with an identical URI in the assertions and rules and with whatever variable in the assertions and rules.

5.5.Matching two triplesets

Fig.5.11 gives a schematic view of multiple matches of a triple with a triple set. The triple (Bart, son, ?w) unifies with two triples (Bart, son, Jan) and (Bart, son, Michèle). The triple (?w, son, Paul) matches with (Guido, son, Paul) and (Jan, son, Paul). This gives 4 possible combinations of matching triples. Following the theory of resolutions all those combinations must be contradicted. In graph terms: they have to match with the closure graph. However, the common variable ?w between the first and the second triple of triple set 1 is a restriction. The object of the first triple must be the same as the subject of the second triple with as a consequence that there is one solution: ?w = Jan. Suppose the second triple was: (?w1, son, Paul). Then this restriction does not any more apply and there are 4 solutions:

{(Bart, son, Jan),(Guido, son, Paul)}

{(Bart, son, Jan), (Jan, son, Paul)}

{(Bart, son, Michèle), (Guido, son, Paul)}

{(Bart, son, Michèle), (Jan, son, Paul)}

This example shows that when unifying two triple sets the product of all the alternatives has to be taken while the substitution has to be propagated from one triple to the next for the variables that are equal and also within a triple if the same variable or node occurs twice in the same triple.

Two remarks:

1) This algorithm can be implemented by a resolution process with backtracking.

2) The triple sets can contain variables; the algorithm amounts to the search of all possible subgraphs of a connected graph, where the possible subgraphs are defined by the triples and the variables in the first triple set.

[image: image9.png]TripleSet1

TripleSet2

T(Bart, son, 7W) e

T@w, son, Paul) ==

Solution: ?w = Jan

T(Bart, son, Jan)
T(Bart, son, Michele)
T(Guido, son, Paul)
T(Wim, son, Guido)
T(Jan, son, Paul)
T(Jan, son, Martha)
T(Guido, son, Martha)
T(Frank, son, Guido)
T(los, son, Fred)

Fig.5.11. Multiple matches within one TripleSet.

5.6.The model interpretation of a rule

A number of results from the RDF model theory [RDFM] are useful .

Subgraph Lemma. A graph entails all its subgraphs.

Instance Lemma. A graph is entailed by any of its instances.

An instance of a graph is another graph where one or more blank nodes of the previous graph are replaced by a URI or a literal.

Merging Lemma. The merge of a set S of RDF graphs is entailed by S and entails every member of S.

The merge can be seen as a merge of triplesets into one tripleset.

Monotonicity Lemma. Suppose S is a subgraph of S’ and S entails E. Then S’ entails E.

These lemmas establish the basic ways of reasoning on a graph. Later on I will add one basic way that is the implication which is materialized by the usage of rules.

The closure procedure used for axiomatizing RDFS in the RDF model theory [RDFM] inspired me to give an interpetation of rules based on a closure process.

Take the following rule R describing the transitivity of the ‘subClassOf’ relation:

{(?c1, subClassOf, ?c2),(?c2, subClassOf, ?c3)} implies {(?c1, subClassOf , ?c3)}.

The rule is applied to all sets of triples in the graph G of the following form:

{(c1, subClassOf, c2), (c2, subClassOf, c3)}

yielding a triple (c1, subClassOf, c3).

This last triple is then added to the graph. This process continues till no more triples can be added. A graph G’ is obtained called the closure of G with respect to the rule R. In the ‘subClassOf’ example this leads to the transitive closure of the subclass-relation.

If a query is posed: (cx, subClassOf, cy) then the answer is positive if this triple is part of the closure G’; the answer is negative if it is not part of the closure.

When variables are used in the query:

(?c1, subClassOf, ?c2)

then the solution consists of all triples (subgraphs) in the closure G’ with the predicate ‘subClassOf’.

The process is illustrated in fig. 5.12 and 5.13 with a similar example.

This gives following definitions:

A rule R is valid with respect to the graph G if the closure G’ of G with respect to the rule R is a valid RDF graph.

The graph G entails the graph T using the rule R if T is a subgraph of the closure G’ of the graph G with respect to the rule R.

A valid RDF graph follows the data model of RDF (chapter 2).

When more than one rule is used the closure G’ will be obtained by the repeated application of the set of rules till no more triples are produced.

Any solution obtained by a resolution process is then a valid solution if it is a subgraph of the closure obtained.

I will not enter into a detailed comparison with first order resolution theory but I want to mention following points:

the closure graph is the equivalent of a minimal Herbrand model in first order resolution theory or a least fixpoint in fixpoint semantics.[VAN BENTHEM] (See also chapter 6).

[image: image22.png]Antwerp —>Train —> Brussels
Brussels —> Alrplane —> Nice
Nice —> Tran —> StTropez

LT Now

Travel agent

Client

Railway Belgium

Brussels Airport

Railway France

~—

Restrictions client

Friendly computer .
Semantic web ~ P"*®

* time

Fig.5.12. A graph with some taller relations and a graph representing the transitive closure of the relation taller relative to the first graph.

[image: image10.png]The semantic meaning of a rule in the graph model

TripleSet

(Fred taller,John)
(John taller,Frank)
(Frank taller,Guido)

rule

{(?x taller,?y),

(?y.taller,?z)}
implies

(7 taller, ?2)}

Query: {(?who taller,Guido)}

closure

Closure graph

(Fred taller,John)
(John taller,Frank)
(Frank taller,Guido)
(Fred taller,Frank)
(Fred taller,Guido)
(John taller,Guido)

Answer: all subgraphs of the closure graph that match with the query.

Fig. 5.13. The closure G’ of a graph G with respect to the given rule. The possible answers are: (Frank,taller,Guido), (Fred,taller,Guido),(John,taller,Guido).

5.7.Unification

A triple consists of a subject, a property and an object. Unifying two triples means unifying the two subjects, the two properties and the two objects. A variable unifies with a URI or a literal. Two URI’s unify if they are the same. The result of a unification is a substitution. A substitution is either a list of tuples (variable, URI or Literal) or nothing (an empty list). The result of the unification of two triples is a substitutions (containing at most 3 tuples). Applying a substitution to a variable in a triple means replacing the variable with the URI or literal defined in the corresponding tuple.

An elementary substitution is represented by a tuple. When applying the substitution the variable in the triple is replaced with the resource. A substitution is a list of elementary substitutions.

type ElemSubst = (Var, Resource)

type Subst = [ElemSubst]

A nil substitution is an empty list.

nilsub :: Subst

nilsub = []

The unification of two statements is given in fig. 5.14.

The application of a substitution is given in fig. 5.15.

-- appESubstR applies an elementary substitution to a resource

appESubstR :: ElemSubst -> Resource -> Resource

appESubstR (v1, r) v2

 | (tvar v2) && (v1 == gvar v2) = r

 | otherwise = v2

-- applyESubstT applies an elementary substitution to a triple

appESubstT :: ElemSubst -> Triple -> Triple

appESubstT es TripleNil = TripleNil

appESubstT es t =

 Triple (appESubstR es (s t), appESubstR es (p t), appESubstR es (o t))

-- appESubstSt applies an elementary substitution to a statement

appESubstSt :: ElemSubst -> Statement -> Statement

appESubstSt es st = (map (appESubstT es) (ants st),

 map (appESubstT es) (cons st), prov st)

-- appSubst applies a substitution to a statement

appSubst :: Subst -> Statement -> Statement

appSubst [] st = st

appSubst (x:xs) st = appSubst xs (appESubstSt x st)

 -- appSubstTS applies a substitution to a triple store

appSubstTS :: Subst -> TS -> TS

appSubstTS subst ts = map (appSubst subst) ts

Fig.5.14. The application of a substitution. The Haskell source code uses the mini-language defined in RDFML.hs

In the application of a substitution the variables in the datastructures are replaced by resources whenever appropriate.

5.8.Matching two statements

The Haskell source code in fig. 5.15. gives the unification functions.

-- type Match = (Subst, Goals, BackStep)

-- type BackStep = (Statement, Statement)

-- unify two statements

unify :: Statement -> Statement -> Maybe Match

-- unify two statements

unify :: Statement -> Statement -> Maybe Match

unify st1@(_,_,s1) st2@(_,_,s2)

 | subst == [] = Nothing

 | (trule st1) && (trule st2) = Nothing

 | trule st1 = Just (subst, transTsSts (ants st1) s1, (st2,st1))

 | trule st2 = Just (subst, transTsSts (ants st2) s2, (st2,st1))

 | otherwise = Just (subst, [stnil], (st2,st1))

 where subst = unifyTsTs (cons st1) (cons st2)

-- unify two triplesets

unifyTsTs :: TripleSet -> TripleSet -> Subst

unifyTsTs ts1 ts2 = concat res1

 where res = elimNothing

 ([unifyTriples t1 t2|t1 <- ts1, t2 <- ts2])

 res1 = [sub |Just sub <- res]

-- transform a tripleset to a list of statements

transTsSts :: [Triple] -> String -> [Statement]

transTsSts ts s = [([],[t],s)|t <- ts]

unifyResource :: Resource -> Resource -> Maybe Subst

unifyResource r1 r2

|(tvar r1) && (tvar r2) && r1 == r2 =

 Just [(gvar r1, r2)]

 | tvar r1 = Just [(gvar r1, r2)]

 | tvar r2 = Just [(gvar r2, r1)]

| r1 == r1 = Just []

| otherwise = Nothing

Fig. 5.15. The unification of two statements

When matching a statement with a rule, the consequents of the rule are matched with the statement. This gives a substitution. This substitution is returned together with the antecedents of the rule and a tuples formed by the statement and the rule.

The antecedents of the rule will form new goals to be proven in the inference process.

Here is an example using a ternary predicate. Following is in Prolog:

Rule : sum(X,2,Y) :- sum(X,1,Z),sum(Z,1,Y).

Query: sum(1,2,X).
This is translated into triples:

Rule:

{(T$$$1,sum_1,?X),(T$$$1,sum_2,”1“),(T$$$1,sum_3,?Z),(T$$$2,sum_1,?Z),(T$$$2,sum_2,“1“),(T$$$2,sum_3,?Y)}log:implies {(T$$$3,sum_1,?X),(T$$$3,sum_2,”2”),(T$$$3,sum_3,?Y)}

Query:

{(T$$$1,sum_1,“1“),(T$$$1,sum_2, “2“),(T$$$1,sum_3,?X)}

The labels T$$$x are interpreted as existential variables, as well in the query as in the rule. However in an assertion they would be interpreted as a constant (URI).

The matching of the query with the rule gives the substitution:

{(T$$$1,T$$$3),(?X,”1”),(?Y,?X)}
and the goals returned are :

(T$$$1,sum_1,?X),(T$$$1,sum_2,”1“),(T$$$1,sum_3,?Z),(T$$$2,sum_1,?Z),(T$$$2,sum_2,“1“),(T$$$2,sum_3,?Y)
Proof of the correctness of this procedure:

Take a rule:

{T1,T2} implies {T3,T4}

where T1,T2,T3 and T4 are triples.

This rule is equivalent to the following two rules:

{T1,T2} implies {T3}

{T1,T2} implies {T4}

The proof in FOL is:

(T1(T2) ((T3(T4) (((T1(T2)((T3(T4) (((T1((T2) ((T3(T4)(
(((T1((T2) (T3) ((((T1((T2) (T4) (((T1(T2)(T3) (((T1(T2)(T4)

This implies that when matching a tripleset with the consequents of a rule, the tripleset does not have to match with all consequents.

5.9.The resolution process

The process I use has been built with a standard SLD inference engine as a model: the prolog engine included in the Hugs distribution [JONES]. The basic backtracking mechanism of my engine is the same. An anti-looping mechanism has been added. This is the mechanism of De Roo [DEROO]. A lazy implementation could be interesting; however this would not permit to do sub-queries.

The resolution process starts with a query. A single query is a tripleset. A query can be composed too: it then has more than one tripleset. This is equivalent to asking more than one question. The query will be matched against the triplesets of the initial graph G and against the rules. The triples of the query are entered into the goal list. A goal unifies with a rule when the triples of the tripleset unify with the consequents of the rule. The goal unifies with another tripleset if all triples in the tripleset unify with a triple of the other set. This can possibly be done in different ways. The result of the unification of two triplesets is a list of substitutions.

A tripleset may unify with many other triplesets or rules.

The unification with a tripleset from the graph G gives a substitution plus grounded triples (that contain no variables). No new goals are returned as subgraph matching with the original graph has occurred as this represents a leaf in the search tree.

The unification of a tripleset with a rule has as a result one or more triplesets. Each tripleset is a new goal. Each of these new goals will be the start of a new search path. One of these paths will be further investigated and after a unification this path will split again into other paths , stop with a failure or stop after a subgraph match with the given graph (producing a leaf in the search tree). The other paths will be pushed on a stack to be investigated later. These search paths form a tree. In a depth first search the search goes on following one path till a leaf of the tree is met. Then backtracking is done one level in the tree and the search goes on till a new leaf is met.

In a breadth first search for all paths one unification is done, one path after another. All paths are followed at the same time till, one by one, they reach an endpoint.

5.10.Structure of the engine

The inference engine : this is where the resolution is executed. An overview of the datastructures was already given in fig. 5.8.
There are three parts to this engine:

a) solve : the generation of new goals by selection of a goal from the goallist by some selection procedure and unifying this goal against all triplesets of the database thereby producing a set of alternative substitutions and triplesets. The process starts by adding the query to the goallist. If the goallist is empty a solution has been found and a backtrack is done in search of other solutions.

b) choose: add one of the alternative triplesets to the goallist; the other ones are pushed on the stack. Each set of alternative goals is pushed on the stack together with the current goallist and the current substitution. If solve did not generate any alternative goals there is a failure (unification did not succeed) and a backtrack must be done to get an alternative goal.

c) backtrack: an alternative goal is retrieved from the stack and added to the goallist. If the stack is empty the resolution process is finished. A failure occurs if for none of the alternatives a unification is possible; otherwise a set of solutions is given.

The algorithm in high-level imperative style programming:

goalList = all triplesets in the query.

do {

 while (not goalList = empty) {

 select a goal.

 If this goal is a new goal unify this goal against the database producing a set of alternative goals (= all the triplesets which unify with the selected goal) and eliminate this goal from the goalList

 else if the goal did not unify do a backtrack: retrieve a goalList from the stack

 else if the process is looping (the set of alternatives has occurred before): do a backtrack retrieve a goalList from the stack.

 else

 add one of this set of alternatives to the goalList and push the others on the stack

 } // while

 a solution has been found;

 retrieve an alternative from the stack

} until (stack == empty)

The goal which is selected from the goalList is the head of the goalList. The alternative which is chosen from the list of alternatives is the first alternative in the list.

-- RDFEngine version of the engine that delivers a proof

-- together with a solution

-- perform an inference step

-- The structure InfData contains everything which is needed for

-- an inference step

infStep :: InfData -> InfData

infStep infdata = solve infdata

solve inf

 | goals1 == [] = backtrack inf

 | otherwise = choose inf1

 where goals1 = goals inf

 (g:gs) = goals1

 level = lev inf

 graphs1 = graphs inf

 matchlist = alts graphs1 level g

 inf1 = inf{goals=gs, ml=matchlist}

backtrack inf

 | stack1 == [] = inf

 | otherwise = choose inf1

 where stack1 = stack inf

 ((StE subst1 gs ms):sts) = stack1

 pathdata = pdata inf

 level = lev inf

 newpdata = reduce pathdata (level-1)

 inf1 = inf{stack=sts,

 pdata=newpdata,

 lev=(level-1),

 goals=gs,

 subst=subst1,

 ml=ms}

choose inf

 | matchlist == [] = backtrack inf

 -- anti-looping controle

 | ba `stepIn` pathdata = backtrack inf

 | (not (fs == [])) && bool = inf1

 | otherwise = inf2

 where matchlist = ml inf

 ((Match subst1 fs ba):ms) = matchlist

 subst2 = subst inf

 gs = goals inf

 stack1 = (StE subst1 gs ms):stack inf

 (f:fss) = fs

 bool = f == ([],[],"0")

 pathdata = pdata inf

 level = lev inf

 newpdata = (PDE ba (level+1)):pathdata

 inf1 = inf{stack=stack1,

 lev=(level+1),

 pdata=newpdata,

 subst=subst1 ++ subst2}

 inf2 = inf1{goals=fs ++ gs}

-- get the alternatives, the substitutions and the backwards rule applications.

-- getMatching gets all the statements with the same property or

-- a variable property.

alts :: Array Int RDFGraph -> Level -> Fact -> MatchList

alts ts n g = matching (renameSet (getMatching ts g) n) g

Fig. 5.16. The inference engine. The source code uses the mini-languages defined in RDFML.hs, InfML.hs and RDFData.hs. The constants are mainly defined in RDFData.hs.

5.11.The backtracking resolution mechanism in Haskell

Fig. 5.16 gives the source code of the engine.

The mechanism which is followed is similar to SLD-resolution: Selection, Linear, Definite [CS]. There is a selection function for triplesets; a quit simple one given the fact that the first in the list is selected. This is one of the points where optimization is possible namely by using another selection function. In my engine however the rules are placed after the facts thereby realizing a certain optimization: the preference is given to a match with facts. This has as a consequence that the first solution might be found more rapidly .

Linear is explained here below.

In prolog the definition of a definite sentence is a sentence that has exactly one positive literal in each clause and the unification is done with this literal. In my engine the clauses can have more than one consequent and thus are not necessarily definite, but they are in most examples.

A resolution strategy selects the clauses (here triplesets and rules) that are used for the unification process.

Following resolution strategies are respected by an SLD-engine:

· depth first: each alternative is investigated until a unification failure occurs or until a solution is found. The alternative to depth first is breadth first.

· set of support: at least one parent clause must be from the negation of the goal or one of the “descendents” of such a goal clause. This is a complete procedure that gives a goal directed character to the search. unit resolution: at least one parent clause must be a “unit clause” i.e. a clause containing a single literal. As I do subgraph matching this is not the case for my engine.

· input resolution: at least one parent comes from the set of original clauses (from the axioms and the negation of the goals). This is not complete in general but complete for Horn clause KB's.

· linear resolution: one of the parents is selected with set of support strategy and the other parent is selected by the input strategy. This is used in my engine at the level of triplesets (a tripleset = a clause).

· ordered resolution: this is the way prolog operates; the clauses are treated from the first to the last and each single clause is unified from left to right.

As already said I put the rules behind the facts.

5.12.The closure path.

5.12.1.Problem

In the following paragraphs I develop a notation that enables to make a comparison between forward reasoning (the making of a closure) and backwards reasoning (the resolution process). The meaning of a rule and what represents a solution to a query are defined using forward reasoning. Therefore the properties of the backward reasoning process are proved by comparing with the forward reasoning process.

5.12.2. The closure process

The original graph that is given will be called G. The closure graph resulting from the application of the set of rules will be called G’ (see further). A rule will be indicated by a miniscule plus an italic index. A subgraph of G or another graph (query or other) will be indicated by a miniscule and an index.

A rule is applied to a graph G; the antecedents of the rule are matched with one or more subgraphs of G to yield a consequent that is added to the graph G. The consequent must be grounded for the graph to stay a valid RDF graph. This means that the consequent can not contain variables that are not in the antecedents.

5.12.3. Notation

A closure path is a finite sequence of triples (not to be confused with RDF triples):

(g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn)

where (g1,r1,c1) means: the rule r1 is applied to the subgraph (tripleset) g1 to produce the subgraph (tripleset) c1 that is added to the graph. A closure path represents a part of the closure process. This is not necessarily the full closure process though the full process is represented also by a closure path.

The indices in gi,ri,ci represent sequence numbers but not the identification of the rules and subgraphs. So e.g. r7 could be the same rule as r11.I introduce this notation to be able to compare closure paths and resolution paths (defined further) for which purpose I do not need to know the identification of the rules and subgraphs.

It is important to remark that all triples in the triplesets (subgraphs) are grounded i.e. do not contain variables. This imposes the restriction on the rules that the consequents may not contains variables that are absent in the antecedents.

5.12.4. Examples

In fig.5.18 rule 1 {(?x, taller, ?y),(?y, taller, ?z)} implies {(?x, taller, ?z)} matches with the subgraph {(John,taller,Frank),(Frank,taller,Guido)}
to produce the subgraph {(John,taller,Guido)} and the substitution ((x,John),(y,Frank),(z,Guido))

In the closure process the subgraph {(John,taller,Guido)} is added to to the original graph.

Fig. 5.17 , 5.18 and 5.19 illustrate the closure paths.

In fig. 5.19 the application of rule 1 and then rule 2 gives the closure path (I do not write completely the rules for brevity):

({(John,taller,Frank),(Frank,taller,Guido)},rule 1, {(John,taller,Guido)}),

({(John,taller,Guido)}, rule 2,{(Guido,shorter,John)})

Two triples are added to produce the closure graph:

(John,taller,Guido) and (Guido,shorter,John).

[image: image11.png]rule r1

resolution patti” closure path
resolution path

no closure path I I
| I
rule'r2 rule r3 | |
i

I
I

i
|

i

N

solution failure

Fig. 5.17.The resolution process with indication of resolution and closure paths.

[image: image12.png]The semantic meaning of a rul

TripleSet

(Fred.taller,John)
(John,taller,Frank)
(Frankstaller, Guido)

Rule

@ taller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

Query:who taller Guido?

closure ;

the graph model.

closure graph

(Fred.taller,John)
(John,taller,Frank)
(Frankitaller,Guido)
(Fred.taller,Frank)
(Fred.taller, Guido)
(John,taller,Guido)

Answer: all subgraphs of the closure graph that match with the query.

Fig.5.18. The closure of a graph G

[image: image13.png]TripleSet

(Fred.taller,Guido)
(John,taller,Frank)
(Frankstaller, Guido)

Rules

{@xtaller,2y),
@y.aller22)}

{@xtaller,?2)}

(@ taller,2y)}
implies
(y.shorter,?x)}

closure ;

closure graph

(Fred.taller,John)
(John,taller,Frank)
(Frankitaller,Guido)
(Fred.taller,Frank)
(Fred.taller, Guido)
(John,taller, Guido)
(Guido,shorter,Frank)
(Guido,shorter,John)
(Guido,shorter,Fred)
(Frank,shorter,John)
(Frank,shorter,Fred)
(John,shorter,Fred)

(x,shorter,?y),
y.shorter, 2]}
implies

{(?,shorter,?2)}

: (Guido,shorter,John).

Fig.5.19. Two ways to deduce the triple (Guido,shorter,John).

5.13.The resolution path.
5.13.1. The process

In the resolution process the query is unified with the database giving alternatives. An alternative is a tripleset and a substitutionlist. One tripleset becomes a goal. This goal is then unified etc… When a unification fails a backtrack is done and the process restarts with a previous goal. This gives in a resolution path a series of goals: query, goal1, goal2,… each goal being a subgraph. If the last goal is empty then a solution has been found; the solution exists of a substitutionlist. When this substitutionlist is applied to the series of goals: query, goal1, goal2, … of the resolution path all subgraphs in the resolution path will be grounded i.e. they will not any more contain any variables (otherwise the last goal cannot be empty). The reverse of such a grounded resolution path is a closure path. I will come back on this. This is illustrated in fig. 5.17.

A subgraph g1 (a goal) unifies with the consequents of a rule with result a substitution s and a subgraph g1’ consisting of the antecedents of the rule

or

g1 is unified with a connected subgraph of G with result a substitution s1 and no subgraph in return. In this case I will assume an identity rule has been applied i.e. a rule that transforms a subgraph into the same subgraph with the variables instantiated. An identity rule is indicated with rid.

The application of a rule in the resolution process is the reverse of the application in the closure process. In the closure process the antecedents of the rules are matched with a subgraph and replaced with the consequents; in the resolution process the consequents of the rule are matched with a subgraph and replaced with the antecedents.

5.13.2. Notation

A resolution path is a finite sequence of triples (not to be confounded with RDF triples):

(c1,r1,g1), (c2,r2,g2), ….,(cn,rn,gn)
(ci,ri,gi) means: a rule ri is applied to subgraph ci to produce subgraph gi. Contrary to what happens in a closure path gi can still contain variables. Associated with each triple (ci,ri,gi) is a substitution si.

The accumulated list of substitutions [si] must be applied to all triplesets that are part of the path. This is very important.

5.13.3. Example

An example from fig.5.20:

The application of rule 2 to the query {(?who,shorter,John)} gives the substitution ((?x,John),(?y,Frank)) and the antecedents {(Frank,shorter,John)}.
An example of closure path and resolution path as they were produced by a trace of the engine can be found in annexe 2.

[image: image14.png]TripleSet

(Fred.taller,Guido)
(John,taller,Frank)
(Frankstaller, Guido)

Rules

Resolution paths Query: 2who shorter John.

Query: (Pwho,shorter,John)
Rule2: ((Pwho,?y),(?x,John)) > (Johntaller,2y)
(John,taller,?y) matches with
(John,taller,Frank) giving the substi
@y.Frank)

The sol 3

(@who,Frank)

{@xtaller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

(Px.taller,2y)}

(y.shorter,?x)}

(x,shorter,?y),
@y,shorter,?2)}
implies

{(?,shorter,?2)}

The resolution path

((Frankshorter,John), rule 2, (John,taller,Frank),
((John,taller,Frank), identity rule, (John,taller,Frank)

Note that the cumulated substitutions have been applied so
that all triples in the resolution path have become grounded.

Fig.5.20. Example of a resolution path.

5.14.Variable renaming

There are two reasons why variables have to be renamed when applying the resolution process (fig.5.21) [AIT]:

1) Different names for the variables in different rules. Though the syntaxis permits to define the rules using the same variables the inference process cannot work with this. Rule one might give a substitution (?x, Frank) and later on in the resolution process rule two might give a substitution (?x,John). So by what has ?x to be replaced?

 It is possible to program the resolution process without this renaming but I think it’s a lot more complicated than renaming the variables in each rule.

2) Take the rule:

{(?x1,taller, ?y1),(?y1,taller, ?z1)} implies {(?x1,taller, ?z1)}

 At one moment (John,taller,Fred) matches with (?x1,taller,?z1) giving substitutions:

 ((?x1, John),(?z1, Fred)).

 Later in the process (Fred,taller,Guido) matches with (?x1,taller,?z1) giving substitutions:

 ((?x1, Fred),(?z1, Guido)).

So now, by what is ?x1 replaced? Or ?z1?

This has as a consequence that the variables must receive a level numbering where each step in the resolution process is attributed a level number.

The substitutions above then become e.g.

((1_?x1, John),(1_?x1, Fred))

and

((2_?x1 , Fred),(2_?z1, Guido))

This numbering is mostly done by prefixing with a number as done above. The variables can be renumbered in the database but it is more efficient to do it on a copy of the rule before the unification process.

In some cases this renumbering has to be undone e.g. when comparing goals.

The goals:

(Fred, taller, 1_?x1).

(Fred, taller, 2_?x1).

are really the same goals: they represent the same query: all people shorter than Fred.

[image: image15.png]TripleSet

(Fred.taller,Guido) Variable Renaming
(John,taller,Frank)
(Frankitaller,Guido) | Separate variable names for rules.

Rule 1: {(x1,taller,2y1),(2y1 taller,2z1)} implies {(?x1taller,221)}
Rule 2: {(?x2,taller,?y2)} implies {(?y2,shorter,?x2)}
Rule 3: {(?x3,shorter,2y3),(?y3,shorter,223)} implies {(?x3,shorter,223)}

Rules

Level numbering:

Match (John,shorter,Fred) wit
(1_2y2,John), (1_?x2,Fred)

{@xtaller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

rule 2:

Match (Guido,shorter,Frank) with rule 2 in the next

(% aller,2y)} resolution step:
implies @_?y2,Guido),2_?x2,Frank)
{2y.shorter,x)}
(@xshorter,2y), | 1.7¥2 and 2_2y2 are really different variablest But:
3 ‘73"7_"""""?") the goals: (Guido,taller,1_?y1) and (Guido,taller,2_?y1) are
plies really the same goals (it does not matter which variable)!!

{(?,shorter,?2)}

Fig. 5.21. Example of variable renaming.

5.15.Comparison of resolution and closure paths

5.15.1. Introduction

Rules, query and solution have been defined using forward reasoning. However, this thesis is about a backwards reasoning engine. In order then to prove the exactness of the followed procedure the connection between backwards and forwards reasoning must be established.

5.15.2. Elaboration

There is clearly a likeness between closure paths and resolution paths. As well for a closure path as for a resolution path there is a sequence of triples (x1,r1,y1) where xi and yi are subgraphs and ri is a rule. In fact parts of the closure process are done in reverse in the resolution process.

I want to stress here the fact that I define closure paths and resolution paths with the complete accumulated substitution applied to all triplesets that are part of the path.

Question: is it possible to find criteria such that steps in the resolution process can be judged to be valid based on (steps in) the closure process?

If a rule is applied in the resolution process to a triple set and one of the triples is replaced by the antecedents then schematically:

(c, as)

where c represent the consequent and as the antecedents.

In the closure process there might be a step:

(as, c) where c is generated by the subgraph as.

A closure path generates a solution when the query matches with a subgraph of the closure produced by the closure path.

I will present some lemmas here with explanations and afterwards I will present a complete theory.

Final Path Lemma. The reverse of a final path is a closure path. All final paths are complete and valid.

I will explain the first part here and the second part later.

A final resolution path is the resolution path when the goal list has been emptied and a solution has been found.

Take a resolution path (q,r1,g1). Thus the query matches once with rule r1 to generate subgraph g1 who matches with graph G. This corresponds to the closure path: (g1,r1,q) where q in the closure G’ is generated by rule r1.

Example: Graph G :

{(chimp, subClassOf, monkeys),(monkeys, subClassOf, mammalia)}

And the subclassof rule:

{(?c1, subClassOf,?c2),(?c2, subClassOf,?c3)} implies {(?c1, subClassOf,? c3)}

- The closure generates using the rule:

(chimp, subClassOf, mammalia)

 and adds this to the database.

- The query:

{(chimp, subClassOf, ?who)}

will generate using the rule :

{(chimp, subClassOf,?c2),(?c2, subClassOf,?c3)}

and this matches with the database where ?c2 is substituted by monkeys and ?c3 is substituted by mammalia.
Proof:

Take the resolution path:

(c1,r1,g1), (c2,r2,g2), … (cn-1,rn-1,gn-1),(cn,rn,gn)

This path corresponds to a sequence of goals in the resolution process:
c1,c2, ….,cn-1,cn. One moment or another during the process these goals are in the goallist. Goals generate new goals or are taken from the goallist when they are grounded. This means that if the goallist is empty all variables must have been substituted by URI’s or literals. But perhaps a temporary variable could exist in the sequence i.e. a variable that appears in the antecedents of a rule x, also in the consequents of a rule y but that has disappeared in the antecedents of rule y. However this means that there is a variable in the consequents of rule y that is not present in the antecedents what is not permitted.

Solution Lemma I: A solution corresponds to an empty closure path (when the query matches directly with the database) or to a minimal closure path.

Note: a minimal closure path with respect to a query is a closure path with the property that the graph produced by the path matches with the query and that it is not possible to diminish the length of the path i.e. to take a rule away.

Proof: This follows directly from the definition of a solution as a subgraph of the closure graph. There are two possibilities: the triples of a solution either belong to the graph G or are generated by the closure process. If all triples belong to G then the closure path is empty. If not there is a closure path that generates the triples that do not belong to G.

It is clear that there can be more than one closure path that generates a solution. One must only consider applying rules in a different sequence. As the reverse of the closure path is a final resolution path it is clear that solutions can be duplicated during the resolution process.

Solution Lemma II: be C the set of all closure paths that generate solutions. Then there exist matching resolution paths that generate the same solutions.

Proof: Be (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn) a closure path that generates a solution.

Let (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) be the corresponding resolution path.

The applied rules are called r1, r2, …, rn.

rn applied to cn gives gn in the resolution path. Some of the triples of gn can match with G, others will be proved by further inferencing (for instance one of them might match with the tripleset cn-1).When cn was generated in the closure it was deduced from gn. The triples of gn can be part of G or they were derived with rules r1,r2, …rn. If they were derived then the resolution process will use those rules to inference them in the other direction. If a triple is part of G in the resolution process it will be directly matched with a corresponding triple from the graph G.

The resolution path is a valid resolution path if after substitution the query is grounded or the resolution path can be extended by adding steps till the query is grounded.

The resolution path is invalid when it is not valid.

The resolution path is complete when after substitution all triples in it are grounded.

Final Path Lemma. The reverse of a final path is a closure path. All final paths are complete and valid.

I give now the proof of the second part.

Proof: Be (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) a final resolution path. I already proved in the first part that it is grounded because all closure paths are grounded. g1 is a subgraph of G (if not, the triple (c1,r1,g1) should be followed by another one). cn is necessarily a triple of the query. The other triples of the query match with the graph G or match with triples of ci, cj etc.. (consequents of a rule). The reverse is a closure path. However this closure path generates all triples of the query that did not match directly with the graph G. Thus it generates a solution.

An example of closure path and resolution path as they were produced by a trace of the engine can be found in annexe 2.

5.16.Anti-looping technique

5.16.1. Introduction

The inference engine is looping whenever a certain subgoal keeps returning ad infinitum in the resolution process.

There are two reasons why an anti-looping technique is needed:

1) loopings are inherent with recursive rules. An example of such a rule:

{(?a, subClassOf, ?b), (?b, subClassOf, ?c)} implies {(?a, subClassOf, ?b)}

These rules occur quit often especially when working with an ontology.

In fact, it is not even possile to seriously test an inference engine for the Semantic Web without an anti-looping mechanism. A lot of testcases use indeed recursive rules.

2) an inference engine for the Semantic Web will often have to handle rules coming from the most diverse origins. Some of these rules can cause looping of the engine. However, because everything is meant to be done without human intervention, looping is a bad characteristic. It is better that the engine finishes without result, then eventually e.g. a forward reasoning engine can be tried.

5.16.2. Elaboration

The technique described here stems from an oral communication of De Roo [DEROO]. Given a resolution path: (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1). Suppose the goal c2 matches with the rule r2 to generate the goal g2. When that goal is identical to one of the goals already present in the resolution path and generated also by the same rule then a loop may exist where the goals will keep coming back in the path.

Take the resolution path:

(cn,rn,gn), …(cx,rx,gx) …(cy,ry,gy)… (c2,r2,g2),(c1,r1,g1)

where the triples (cx,rx,gx),(cy,ry,gy) and (c2,r2,g2) are equal (recall that the numbers are sequence numbers and not identification numbers).

I call, by definition, a looping path a path in which the same triple (cx,rx,gx) occurs twice.

The anti-looping technique consists in failing such a path from the moment a triple (cx,rx,gx) comes back for the second time. These triples can still contain variables so the level numbering has to be stripped of the variables before the comparison.

No solutions are excluded by this technique as shown by the solution lemma II. Indeed the reverse of a looping path is not a closure path. But there exists closure paths whose reverse is a resolution path containing a solution. So all solutions can still be found by finding those paths.

In my engine I control whether the combination antecedents-rule returns which is sufficient because the consequent is determined then.

In the implementation a list of antecedents is kept. This list must keep track of the current resolution level; when backtracking goals with higher level than the current must be token away.

That this mechanism stops all looping can best be shown by showing that it limits the maximum depth of the resolution process, however without excluding solutions.

When a goal matches with the consequent of rule r producing the antecedents as, the tuple (as, r) is entered into a list, called the oldgoals list. Whenever this tuple (as,r) comes back in the resolution path backtracking is done. This implies that in the oldgoals list no duplicate entries can exist. The number of possible entries in the list is limited to all possible combinations (as, r) that are finite whenever the closure graph G’ is finite. Let this limit be called maxG. Then the maximum resolution depth is maxR = maxG + maxT where maxT is the number of grounded triples in the query and maxG are all possible combinations (as, r). Indeed, at each step in the resolution process either a rule is used generating a tuple (as,r) or a goal(subgraph) is matched with the graph G.

When the resolution depth reaches maxR all possible combinations (as,r) are in the oldgoals list; so no rule can produce anymore a couple (as,r) that is not rejected by the anti-looping technique.

In the oldgoals list all triples from the closure graph G’ will be present because all possible combinations of goals and rules have been tried. This implies also that all solutions will be found before this maximum depth is reached.

Why does this technique not exclude solutions?

Take a closure path (as1, r1,c1) … (asn,rn,cn) generating a solution . No rule will be applied two times to the same subgraph generating the same consequent to be added to the closure. Thus no asx is equal to asy. The reverse of a closure path is a resolution path. This proofs that there exist resolution paths generating a solution without twice generating the same tuple (as,r).

A maximal limit can be calculated for maxG.

Be atot the total number of antecedents generated by all rules and ntot is the total number of labels and variables. Each antecedent is a triple and can exist maximally in ntot**3 versions. If there are n1 grounded triples in the query this gives for the limit of maxG: (ntot**3) **(atot + n1).

This can easily be a very large number and often stack overflows will occur before this number is reached.

5.16.3.Failure

A failure (i.e. when a goal does not unify with facts or with a rule) does never exclude solutions. Indeed the reverse of a failure resolution path can never be a closure path. Indeed the last triple set of the failure path is not included in the closure. If it were its triples should either match with a fact or with the consequent of a rule.

5.16.4.Completeness

Each solution found in the resolution process corresponds to a resolution path. Be S the set of all those paths. Be S1 the set of the reverse paths which are valid closure paths. The set S will be complete when the set S1 contains all possible closure paths generating the solution. This is the case in a resolution process that uses depth first search as all possible combinations of the goal with the facts and the rules of the database are tried.

5.16.5.Monotonicity

Suppose there is a database, a query and an answer to the query. Then another database is merged with the first. The query is now posed again. What if the first answer is not a part of the second answer?

In this framework monotonicity means that when the query is posed again after the merge of databases, the first answer will be a subset of the second answer.

The above definition of databases, rules, solutions and queries imply monotonicity. Indeed all the facts and rules of the first database are still present so that all the same triples will be added during the closure process and the query will match with the same subgraphs.

Nevertheless, some strange results could result.

Suppose a tripleset:

{(blood,color,”red”)}

and a query:

{(blood,color,?what)}

gives the answer:

{(blood,color,”red”)}.

Now the tripleset:

{(blood,color,”yellow”)}

is added. The same query now gives two answers:

{(blood,color,”red”)} and {(blood,color,”yellow”)}.
However this is normal as nobody did ‘tell’ the computer that blood cannot be yellow (it could be blue however).

To enforce this, extensions like OWL are necessary where a restriction is put on the property ‘color’ in relation with the subject ‘blood’.

In the now following formal part definitions are given and the lemmas above and others are proved.

Fig. 5.22. gives an overview of the lemmas and the most important points proved by them.

[image: image16.png]Lemmas

Resolution Lemma
Closure Lemma
Final Path Lemma
g Lemma |
a Lemma Il

Duplication Lemma
Failure Lemma

Solution Lemma IV
Completeness Lemma
Infinite Looping Lemma
Monotonicity Lemma

Essential points

1) Proof of the validity of the used resolution
process

2) Proof of the validity of the anti-looping
technique:

a) all loopings are stopped

b) no solutions are lost by doing so

3) Proof of completeness

4) No use of RDF Model Theory or First Order
logic; the reasoning is graph-theoretical.

5) Generally applicable to planary graphs
6) Monoto

Fig.5.22. Overview of the lemmas.

5.17.A formal theory of graph resolution

5.17.1. Introduction

In this section I present more formally as a series of definitions and lemmas what has been explained more informally in the preceding sections.

5.17.2.Definitions

A triple consists of two labeled nodes and a labeled arc.

A tripleset is a set of triples.

A graph is a set of triplesets.

A rule consists of antecedents and a consequent. The antecedents are a tripleset; the consequent is a triple.

Applying a rule r to a graph G in the closure process is the process of unifying the antecedents with all possible triples of the graph G while propagating the substitutions. For each successful unification the consequents of the rule is added to the graph with its variables substituted.

Applying a rule r to a subgraph g in the resolution process is the process of unifying the consequents with all possible triples of g while propagating the substitutions. For each successful unification the antecedents of the rule are added to the goallist of the resolution process (see the explanation of the resolution process).

A rule r is valid with respect to the graph G if its closure G’ with respect to the graph G is a valid graph.

A graph G is valid if all its elements are triples.

The graph G entails the graph T using the rule R if T is a subgraph of the closure G’ of the graph G with respect to the rule R.

The closure G’ of a graph G with respect to a ruleset R is the result of the application of the rules of the ruleset R to the graph G giving intermediate graphs Gi till no more new triples can be generated. A graph may not contain duplicate triples.

The closure G’ of a graph G with respect to a closure path is the resulting graph G’ consisting of G with all triples added generated by the closure path.

A solution to a query with respect to a graph G and a ruleset R is a subgraph of the closure G’ that unifies with the query.

A solution set is the set of of all possible solutions.

A closure path is a sequence of triples (gi,ri,ci) where gi is a subgraph of a graph Gi derived from the given graph G, ri is a rule and ci are the consequents of the rule with the substitution si.si is the substitution obtained trough matching a subgraph of Gi with the antecedents of the rule ri.The tripleset ci is added to Gi to produce the graph Gj. All triples in a closure path are grounded.

A minimal closure path with respect to a query is a closure path with the property that the graph produced by the path matches with the query and that it is not possible to diminish the length of the path i.e. to take a triple away.

The graph generated by a closure path consists of the graph G with all triples added generated by the rules used for generating the closure path.

A closure path generates a solution when the query matches with a subgraph of the graph generated by the closure path.

The reverse path of a closure path (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn) is:

(cn,rn,gn), … (c2,r2,g2),(c1,r1,g1).

A resolution path is a sequence of triples (ci,ri,gi) where ci is subgraph that matches with the consequents of the rule ri to generate gi and a substitution si
. However in the resolution path the accumulated substitutions [si] are applied to all triplesets in the path.

A valid resolution path is a path where the triples of the query become grounded in the path after substitution or match with the graph G; or the resolution process can be further applied to the path so that finally a path is obtained that contains a solution. All resolution paths that are not valid are invalid resolution paths. The resolution path is incomplete if after substitution the triple sets of the path still contain variables. The resolution path is complete when, after substitution, all triple sets in the path are grounded.

A final resolution path is the path that rests after the goallist in the (depth first search) resolution process has been emptied. The path then consists of all the rule applications applied during the resolution process.

A looping resolution path is a path with a recurring triple in the sequence (cn,rn,gn), …(cx,rx,gx) …(cy,ry,gy)… (c2,r2,g2),(c1,r1,g1) i.e. (cx,rx,gx) is equal to some (cy,ry,gy). The comparison is done after stripping of the level numbering.

The resolution process is the building of resolution paths. A depth first search resolution process based on backtracking is explained elsewhere in the text.

5.17.3. Lemmas

Resolution Lemma. There are three possible resolution paths:

1) a looping path

2) a path that stops and generates a solution

3) a path that stops and is a failure

Proof. Obvious.

Closure lemma. The reverse of a closure path is a valid, complete and final resolution path for a certain set of queries.

Proof. Take a closure path: (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn). This closure path adds the triplesets c1, …,cn to the graph. All queries that match with these triples and/or triples from the graph G will be proved by the reverse path:

(cn,rn,gn), … (c2,r2,g2),(c1,r1,g1). The reverse path is complete because all closure paths are complete. It is final because the triple set g1 is a subgraph of the graph G (it is the starting point of a closure path). Take now a query as defined above: the triples of the query that are in G do of course match directly with the graph. The other ones are consequents in the closure path and thus also in the resolution path. So they will finally match or with other consequents or with triples from G.

Final Path Lemma: The reverse of a final path is a closure path. All final paths are complete and valid.

Proof:A final resolution path is the resolution path when the goal list has been emptied and a solution has been found.

Take the resolution path:

(c1,r1,g1), (c2,r2,g2), … (cn-1,rn-1,gn-1),(cn,rn,gn)

This path corresponds to a sequence of goals in the resolution process:
c1,c2, ….,cn-1,cn. One moment or another during the process these goals are in the goallist. Goals generate new goals or are taken from the goallist when they are grounded. This means that if the goallist is empty all variables must have been substituted by URI’s or literals. But perhaps a temporary variable could exist in the sequence i.e. a variable that appears in the antecedents of a rule x, also in the consequents of a rule y but that has disappeared in the antecedents of rule y. However this means that there is a variable in the consequents of rule y that is not present in the antecedents what is not permitted.

Be (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) a final resolution path. I already proved in the first part that it is grounded because all closure paths are grounded. g1 is a subgraph of G (if not, the triple (c1,r1,g1) should be followed by another one). cn matches necessarily with the query. The other triples of the query match with the graph G or match with triples of ci, cj etc.. (consequents of a rule). The reverse is a closure path. However this closure path generates all triples of the query that did not match directly with the graph G. Thus it generates a solution.

Looping Lemma I. If a looping resolution path contains a solution, there exists another non looping resolution path that contains the same solution.

Proof. All solutions correspond to closure paths in the closure graph G’ (by definition). The reverse of such a closure path is always a valid resolution path and is non-looping.

Looping Lemma II. Whenever the resolution process is looping, this is caused by a looping path if the closure of the graph G is not infinite.

Proof. Looping means in the first place that there is never a failure i.e. a triple or tripleset that fails to match because then the path is a failure path and backtracking occurs. It means also triples continue to match in an infinite series.

There are two sublemmas here:

Sublemma 1. In a looping process at least one goal should return in the goallist.

Proof.Can the number of goals be infinite? There is a finite number of triples in G, a finite number of triples that can be generated and a finite number of variables. This is the case because the closure is not infinite. So the answer is no. Thus if the process loops (ad infinitum) there is a goal that must return at a certain moment.

Sublemma 2. In a looping process a sequence (rule x) goal x must return. Indeed the numbers of rules is not infinite; neither is the number of goals; if the same goal returns infinitly, sooner or later it must return as a deduction of the same rule x.

Infnite Looping Path Lemma. If the closure graph G’ is not infinite and the resolution process generates an infinite number of looping paths then this generation will be stopped by the anti-looping technique and the resolution process will terminate in a finite time.

Proof. The finiteness of the closure graph implies that the number of labels and arcs is finite too.

Suppose that a certain goal generates an infinite number of looping paths.

This implies that the breadth of the resolution tree has to grow infinitely. It cannot grow infinitely in one step (nor in a finite number of steps) because each goal only generates an finite number of children (the database is not infinite). This implies that also the depth of the resolution tree has to grow infinitely. This implies that the level of the resolution process grows infinitely and also then the number of entries in the oldgoals list.

Each growth of the depth produces new entries in the oldgoals list. (In this list each goal-rule combination is new because when it is not, a backtrack is done by the anti-looping mechanism). In fact with each increase in the resolution level an entry is added to the oldgoals list.

Then at some point the list of oldgoals will contain all possible rule-goals combinations and the further expansion is stopped.

Formulated otherwise, for an infinite number of looping paths to be materialized in the resolution process the oldgoals list should grow infinitely but this is not possible.

Addendum: be maxG the maximum number of combinations (goal, rule). Then no branch of the resolution tree will attain a level deeper than maxG. Indeed at each increase in the level a new combination is added to the oldgoals list.

Infinite Lemma. For a closure to generate an infinite closure graph G’ it is necessary that at least one rule adds new labels to the vocabulary of the graph.

Proof. Example: {:a log:math :n } ({:a log:math :n+1). The consequent generated by this rule is each time different. So the closure graph will be infinite. Suppose the initial graph is: :a log:math :0. So the rule will generate the sequence of natural numbers.

If no rule generates new labels then the number of labels and thus of arcs and nodes in the graph is finite and so are the possible ways of combining them.

Duplication Lemma. A solution to a query can be generated by two different valid resolution paths. It is not necessary that there is a cycle in the graph G’.

Proof. Be (c1,r1,g1), (c2,r2,g2), (c3,r3,g3) and (c1,r1,g1), (c3,r3,g3), (c2,r2,g2) two resolution paths.Let the query q be equal to c1. Let g1 consist of c2 and c3 and let g2 and g3 be subgraphs of G. Then both paths are final paths and thus valid (Final Path Lemma).

Failure Lemma. If the current goal of a resolution path (the last triple set of the path) can not be unified with a rule or facts in the database, it can have a solution, but this solution can also be found in a final path.

Proof. This is the same as for the looping lemma with the addition that the reverse of a failure path cannot be a closure path as the last triple set is not in the graph G (otherwise there would be no failure).

Substitution Lemma I. When a variable matches with a URI the first item in the substitution tuple needs to be the variable.

Proof. 1) The variable originates from the query.

a) The triple in question matches with a triple from the graph G. Obvious, because a subgraph matching is being done.

b) The variable matches with a ground atom from a rule.

 Suppose this happens in the resolution path when using rule r1:

 (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1)
 The purpose is to find a closure path:

 (g1,r1,c1),… , (gx,rx,cx),… ,(gn, rn,cn) where all atoms are grounded.

 When rule r1 is used in the closure the ground atom is part of the closure graph, thus in the resolution process , in order to find a subgraph of a closure graph, the variable has to be substituted by the ground atom.

2) A ground atom from the query matches with a variable from a rule. Again, the search is for a closure path that leads to a closure graph that contains the query as a subgraph. Suppose a series of substitutions:

 (v1, a1) (v2,a2) where a1 originates from the query corresponding to a resolution path: (c1,r1,g1) ,(c2,r2,g2), (c3,r3,g3). Wherever v1 occurs it will be replaced by a1. If it matches with another variable this variable will be replaced by a1 too. Finally it will match with a ground term from G’. This corresponds to a closure path where in a sequence of substitutions from rules each variable becomes replaced by a1, an atom of G’.

3) A ground atom from a rule matches with a variable from a rule or the inverse. These cases are exactly the same as the cases where the ground atom or the variable originates from the query.

Substitution Lemma II. When two variables match, the variable from the query or goal needs to be ordered first in the tuple.

Proof. In a chain of variable substitution the first variable substitution will start with a variable from the query or a goal. The case for a goal is similar to the case for a query. Be a series of substitutions:

(v1,v2) (v2,vx) … (vx,a) where a is a grounded atom.

By applying this substitution to the resolution path all the variables will become equal to a. This corresponds to what happens in the closure path where the ground atom a will replace all the variables in the rules.

Solution Lemma I: A solution corresponds to an empty closure path (when the query matches directly with the database) or to one or more minimal closure paths.

Proof: there are two possibilities: the triples of a solution either belong to the graph G or are generated by the closure process. If all triples belong to G then the closure path is empty. If not there is a closure path that generates the triples that do not belong to G.

Solution Lemma II: be C the set of all closure paths that generate solutions. Then there exist matching resolution paths that generate the same solutions.

Proof: Be (g1,r1,c1),… , (gx,rx,cx),… ,(gn, rn,cn) a closure path that generates a solution.

Let ((cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) be the corresponding resolution path.

rn applied to cn gives gn. Some of the triples of gn can match with G, others will be deduced by further inferencing (for instance one of them might be in cn-1). When cn was generated in the closure it was deduced from gn. The triples of gn can be part of G or they were derived with rules r1,…, rn-2. If they were derived then the resolution process will use those rules to inference them in the other direction. If a triple is part of G in the resolution process it will be directly matched with a corresponding triple from the graph G.

Solution Lemma III. The set of all valid solutions to a query q with respect to a graph G and a ruleset R is generated by the set of all valid resolution paths, however with elimination of duplicates.

Proof. A valid resolution path generates a solution. Because of the completeness lemma the set of all valid resolution paths must generate all solutions. But the duplication lemma states that there might be duplicates.

Solution Lemma IV. A complete resolution path generates a solution and a solution is only generated by a complete, valid and final resolution path.

Proof. (: be (cn, rn,gn),… , (cx,rx,gx),… , (c1,r1,g1) a complete resolution path. If there are still triples from the query that did not become grounded by 1) matching with a triple from G or 2) following a chain (cn, rn,gn),…, (c1,r1,g1) where all gn match with G, the path cannot be complete. Thus all triples of the query are matched and grounded after substitution, so a solution has been found.

(: be (cn, rn,gn),… , (cx,rx,gx),… , (c1,r1,g1) a resolution path that generates a solution. This means all triples of the query have 1) matched with a triple from G or 2) followed a chain (cn, rn,gn),…, (c1,r1,g1) where gn matches with a subgraph from G. But then the path is a final path and is thus complete (Final Path Lemma).

Completeness Lemma. The depth first search resolution process with exclusion of invalid resolution paths generates all possible solutions to a query q with respect to a graph G and a ruleset R.

Proof.Each solution found in the resolution process corresponds to a closure path. Be S the set of all those paths. Be S1 the set of the reverse paths which are resolution paths (Valid Path Lemma). The set of paths generated by the depth first search resolution process will generate all possible combinations of the goal with the facts and the rules of the database thereby generating all possible final paths.

It is understood that looping paths are stopped.

Monotonicity Lemma. Given a merge of a graph G1 with rule set R1 with a graph G2 with rule set R2; a query Q with solution set S obtained with graph G1 and rule set R1 and a solution set S’ obtained with graph G2 and rule set R2. Then S is contained in S’.

Proof. Be G1’ the closure of G1. The merged graph Gm has a rule set Rm that is the merge of rule sets R1 and R2. All possible closure paths that produced the closure G1’ will still exist after the merge. The closure graph G1’ will be a subgraph of the graph Gm. Then all solutions of solution set S are still subgraphs of Gm and thus solutions when querying against the merged graph Gm.

5.18.An extension of the theory to variable arities

5.18.1. Introduction

A RDF triple can be seen as a predicate with arity two. The theory above was exposed for a graph that is composed of nodes and arcs. Such a graph can be represented by triples. These are not necessarily RDF triples. The triples consist of two node labels and an arc label. This can be represented in predicate form where the arc label is the predicate and the nodes are its arguments.

This theory can easily be extended to predicates with other arities.

Such an extension does not give any more semantic value. It does permit however to define a much more expressive syntax.

5.18.2.Definitions

A multiple of arity n is a predicate p also called arc and (n-1) nodes also called points. The points are connected by an (multi-headed) arc. The points and arcs are labeled and no two labels are the same.

A graph is a set of multiples.

Arcs and nodes are either variables or labels. (In internet terms labels could be URI’s or literals).

Two multiples unify when they have the same arity and their arcs and nodes unify.

A variable unifies with a variable or a label.

Two labels unify if they are the same.

A rule consists of antecedents and a consequent. Antecedents are multiples and a consequent is a multiple.

The application of a rule to a graph G consists in unifying the antecedents with multiples from the graph and, if successful, adding the consequent to the graph.

5.18.3. Elaboration

The lemmas of the theory explained above can be used if it is possible to reduce all multiples to triples and then proof that the solutions stay the same.

Reduction of multiples to triples:
Unary multiple: In a graph G a becomes (a,a, a) .In a query a becomes (a,a,a). These two clearly match.

Binary multiple: (p,a) becomes (a,p,a). The query (?p,?a) corresponds with (?a, ?p, ?a).

Ternary multiple: this is a triple.

Quaternary multiple: (p, a, b, c) becomes:

{(x, p, a), (x, p, b), (x,p,c)} where x is a unique temporary label.

The query (?p,?a,?b,?c) becomes:

{(y,?p,?a),(y,?p,?b),(y,?p,?c)}.

It is quit obvious that this transformation does not change the solutions.

Other arities are reduced in the same way as the quaternary multiple.

5.19.An extension of the theory to typed nodes and arcs

5.19.1. Introduction

As argued also elsewhere (chapter 8) attributing types to the different syntactic entities i.e. nodes and arcs could greatly facilitate the resolution process. Matchings of variables with nodes or arcs that lead to failure because the type is not the same can thus be impeded.

5.19.2. Definitions

A sentence is a sequence of syntactic entities. A syntactic entity has a type and a label. Example: verb/walk.

Examples of syntactic entities: verb, noun, article, etc… A syntactic entity can also be a variable. It is then preceded by an interrogation mark.

A language is a set of sentences.

Two sentences unify if their entities unify.

A rule consists of
antecedents that are sentences and a consequent that is a sentence.

5.19.3. Elaboration

An example: {(noun/?noun, verb/walks)} ({(article/?article,noun/ ?noun, verb/walks)}

In fact what is done here is to create multiples where each label is tagged with a type. Unification can only happen when the types of a node or arc are equal besides the label being equal.

Of course sentences are multiples and can be transformed to triples.

Thus all the lemmas from above apply to these structures if solutions can be defined to be subgraphs of a closure graph. .

This can be used to make transformations e.g.

(?ty/label,object/?ty1) ((par/’(‘, object/?ty1).

Parsing can be done:

(?/charIn ?/= ?/‘(‘) ((?/charOut ?/= par/’(‘)

Chapter 6. RDF, inferencing and logic.

6.1.The model mismatch

Note: In this chapter the notation used will be the usual notation for first order logic.

When the necessity was felt to define rules as a layer above RDF and rdfs inspiration was sought in the beginning with first order logic (FOL) and more specifically with horn clauses.[SWAP, DECKER, RDFRULES]. Nevertheless the model theory of RDF is completely graph oriented. This creates a model mismatch where on the one hand a graph model and entailment on graphs is followed when using basic RDF, on the other hand FOL reasoning is followed when using inferencing.

This raises the question: how do you translate between the two models or is this even possible?

Indeed, the semantics of the graph model and those of first order logic are not the same.

There are points of difference between the graph model of RDF and FOL:

1) RDF only uses the logic ‘and’ by way of the implicit conjunction of RDF triples. The logic layer adds the logic implication and variables. Negation and disjunction (or), where necessary, have to be implemented as properties of subjects. The implication as defined for RDF is usually not the same as the first order material implication.

2) Is a FOL predicate the same as an RDF property? Is a predicate Triple(subject,property,object) really the same as a triple (subject,property, object)?

3) The quantifiers (forAll, forSome) are not really ‘existing’. A solution is a match of a query with the closure graph. The quantifier used is then: ‘for_all_known_in_our_database’. The database can be an ad-hoc database that came to existence by a merge of several RDF-databases.

4) The logic as defined in the preceding chapter is not the same as FOL. This will be discussed more ddeply in the following. As an example lets take the implication: a (b in FOL implies (b ((a in FOL. This is not true as far as the definition of rules in the preceding chapter is concerned:

(s1,p1,o1)implies(s2,p2,o2) does not imply (not(s2,p2,o2))implies (not(s1,p1,o1)). This not is not even defined!

I have made a model of RDF in FOL without however claiming the isomorphism of the translation. Others have done the same before [RDFRULES]. In this model RDF and the logic extension are both viewed in terms of FOL and the corresponding resolution theory.

I have constructed also a model of RDF and the logic layer with reasoning on graphs (chapter 5). Here the compatibility with the RDF model theory is certain. The model enabled me to proof some characteristics of the resolution process used for the Haskell engine, RDFEngine.
6.2.Modelling RDF in FOL
6.2.1. Introduction

RDF works with triples. A triple is composed of a subject, predicate and object. These items belong together and may not be separated. To model them in FOL a predicate Triple can be used :

Triple(subject, predicate, object)

Following the model theory [RDFM] there can be sets of triples that belong together. If t1, t2 and t3 are triples, a set of triples might be modelled as follows:

Tripleset(t1, t2, t3)

This is however not correct as the length of the set is variable; so a list must be used.

There exist also anonymous subjects: these can be modelled by an existential variable:

(X: Triple(X, b, c)

saying that there exists something with property b and value c.

An existential elimination can also be applied putting some instance for the variable (existential elimination):

Triple(_ux, b, c)

6.2.2. The RDF data model

Now let's consider the RDF data model [RDFM]: fig. 6.1.

Note: for convenience Triple will be abbreviated T and TripleSet TS.

This datamodel gives the first order facts and rules as shown in fig. 6.2.

(a set is represented by rdfs:Class).

As subjects and objects are Resources they can be triples too (called “embedded triples”); predicates however cannot be triples because of rule 6. This can be used for an important optimization in the unification process.

Reification of a triple {pred, sub, obj} [RDFM] of Statements is an element r of Resources representing the reified triple and the elements s1, s2, s3, and s4 of Statements such that :

The RDF data model

Point 1-4 describe the sets in the model :

1) There is a set called Resources.

2) There is a set called Literals.

3) There is a subset of Resources called Properties.

4) There is a set called Statements, each element of which is a triple of the form

{pred, sub, obj}

where pred is a property (member of Properties), sub is a resource (member of Resources), and obj is either a resource or a literal (member of Literals).(Note: this text will use the sequence {sub, pred, obj}).

The following points give extra properties:

5)RDF:type is a member of Properties.

6)RDF:Statement is a member of resources but not contained in Properties.

7)RDF:subject, RDF:predicate and RDF:object are in Properties.

Fig. 6.1. The RDF data model.

The RDF data model in First Order Logic

1) T(rdf:Resources, rdf:type, rdfs:Class)

2) T(rdf:Literals, rdf:type, rdfs:Class)

3) T(rdf:Resources, rdfs:subClassOf, rdf:Properties)

4) T(rdf:Statements, rdf:type, rdfs:Class)

 (s, sub, pred, obj: T(s, rdf:type, rdf:Statements) ((Equal(s, Triple(sub, pred, obj)) (T(pred, rdf:type, rdf:Property) (T(sub, rdf:type, rdf:Resources) (T(obj, rdf:type, rdf:Resources) (T(obj, rdf:type, rdf:Literals)))

5) T(rdf:type, rdf:type, rdf:Property) Note the recursion here.

6) T(rdf:Statement, rdf:type, rdf:Resources)

 (T(rdf:Statement, rdf:type, rdf:Property)

7) T(rdf:subject, rdf:type, rdf:Property)

 T(rdf:predicate, rdf:type, rdf:Property)

 T(rdf:object, rdf:type, rdf:Property)

Fig. 6.2. The RDF data model in First Order Logic

s1: {RDF:predicate, r, pred}
s2: {RDF:subject, r, subj}
s3: {RDF:object, r, obj}
s4: {RDF:type, r, RDF:Statement}

In FOL:

(r, sub, pred, obj: T(r, rdf:type, rdf:Resources) (T(r, rdf :predicate, pred) (T(r, rdf:subject, subj) (T(r, rdf:subject, obj) -> T(r, Reification, T(sub, pred, obj))

The property ‘Reification’ is introduced here.

As was said a set of triples has to be represented by a list:

If T(d,e,f), T(g,h,i) and T(a,b,c) are triples then the list of this triples is :

{:d :e :f. :g :h :i. :a :b :c} becomes:

TS(T(d, e, f),TS(T(g,h,i),TS(T(a,b,c))))

In prolog e.g. :

[T(d, e, f)|T(g, h, i)|T(a, b, c].

In Haskell this is better structured:

type TripleSet = [Triple]

tripleset = [Triple(d, e, f), Triple(g, h, i), Triple(a, b, c)]

6.2.3. A problem with reification

Following the data model a node in the RDF graph can be a triple. Such a node can be serialised i.e. the triple representing the node is given a name and then represented separately by its name.

Example: T(Lois,believes,T(Superman,capable,fly)). [Sabin]

This triple expresses a so called quotation. It is not the intention that such a triple is asserted i.e. considered to be true.

So, given the triple: T(Superman,identical,ClarkKent) it should not be infered:

T(Lois,believes,T(ClarkKent,capable,fly)).

The triple T(Lois,believes,T(Superman,capable,fly)). should be serialised as follows:

T(Lois,believes,t).

T(RDF:predicate, t, capable).
T(RDF:subject, t, Superman).
T(RDF:object, t, fly).
T(RDF:type, t, RDF:Statement).

The reified triples do not belong to the same RDF graph as the triple:

T(Lois,believes,T(Superman,capable,fly)) as can easily be verified.

The triple T(Superman,identical,ClarkKent) can not be unified with this reification.

The conclusion is that separate triples should not be unified with embedded triples i.e. with triples that represent a node in the RDF graph. The possibility of representing nodes by a triples or a tripleset enhances considerably the expressiveness of RDF as I have been able to conclude from some experiments.

However the data model states:

RDF:Statement is a member of resources but not contained in Properties.

Strictly speaking then one triple can compose a node but not a tripleset. Nevertheless, I’m in favour of permitting a resource to be constituted by a tripleset.

Consider now the Notation3 statement:

:Lois :believes {:Superman :capable :fly}.

Now this can be interpreted in two ways (with a different semantic interpretation):

1) :Lois :believes :Superman.

:Superman :capable :fly.

Here however the ‘quoting’ aspect has vanished.

2) The second interpretation is by reification as above.

I will take it that the second interpretation is the right one.

Klyne [Klyne2002] gives also an analysis of these embedded triples also called formulae.

6.2.4.Conclusion

The RDF data model can be reduced to a subset of first order logic. It is restricted to the use of a single predicate Triple and lists of triples. However this model says nothing about the graph structure of RDF.(See chapter 5).

For convenience in what follows lists will be represented between ‘[]’; variables will be identifiers prefixed with ?.

6.3.Unification and the RDF graph model

An RDF graph is a set of zero, one or more connected subgraphs. The elements of the graph are subjects, objects or bNodes (= anonymous subjects). The arcs between the nodes represent predicates.

Suppose there is the following database:

TS[T(Jack, owner, dog),T(dog, name, “Pretty”), T(Jack, age, “45”)]

And a query: TS(T(?who, owner, dog), T(dog, name, ?what))

If we represent the first subgraph of the database and the first query as follows:

T(Jack, owner, dog) (T(dog, name, “Pretty) (T(Jack, age, “45”)

and the query(here negated for the proof):

(T(?who, owner, dog) ((T(dog, name, ?what)

Then by applying the rule of UR (Unit Resolution) to the query and the triples T(Jack, owner, dog) and T(dog, name, “Pretty) the result is the substitution: [(?who, Jack),(?what, “Pretty”)] .
Proof of this application: T(a) (T(b) (((T(a) ((T(b)) =

T(a) ((T(b) ((T(a)) ((T(b) ((T(b)) = T(a) ((T(b) ((T(a)) = False

This proof can be extended to any number of triples. This is in fact UR resolution with a third empty clause.

In [WOS]: “Formally, UR-resolution, is that inference rule that applies to a set of clauses one of which must be a non-unit clause, the remaining must be unit clauses, and the result of successful application must be a unit clause. Furthermore, the nonunit clause must contain exactly one more literal than the number of (not necessarily distinct) unit clauses in the set to which UR-resolution is being applied.“

An example of UR-resolution(in prolog style):

rich(John) (happy(John) (tall(John)

(rich(John)
(happy(John)

tall(John)

A query (goal) applied to a rule gives:

 (T(a) (T(b)) (T(c) = (T(a) ((T(b) (T(c)

where the query will be : (T(?c)
Here the application of binary resolution gives the new goal:

 (T(a) ((T(b) and the substitution (?c, c).
In [WOS] : “ Formally, binary resolution is that inference rule that takes two clauses, selects a literal in each of the same predicate but of opposite sign, and yields a clause providing that the two selected literals unify. The result of a successful application of binary resolution is obtained by applying the replacement that unification finds to the two clauses, deleting from each (only) the descendant of the selected literal, and taking the or of the remaining literals of the two clauses. “

An example (in prolog style) of binary resolution:

rich(John) (happy(John)

(rich(John) (tall(John)

happy(John) (tall(John)
This application does not produce a contradiction; it adds the clause (T(a) ((T(b) to the goallist.

The logical implication is not part of RDF or RDFS. It will be part of a logic standard for the Semantic Web yet to be established.

This unification mechanism is classical FOL resolution.

6.4.Embedded rules

Embedded rules should pose no problems. When a rule produces a rule it is added to the goallist. A rule in the goallist should be unified with a tripleset but not with another rule.

An example of the use of embedded rules:

Suppose a reasoning generates a triple T(outcome, =, X1) and depending on that value a rule must be generated: T(?X1,>,X2) (T(?X1, = ,?X1/X3).
Hence the rule: (T(?X1,>,X2) (T(?X1,=, X3)) (T(outcome, =, ?X1). This rule generated in the set of support will then unify with clauses of the form : T(_,=,X3).
In fact a rule represents generally a relation: for each set of values for the variables in the antecedents there is a set of values for the consequent, while the consequent may contain (a) variable(s) not present in the antecedents. If the consequent does not contain variables different from those in the antecedents then the rule represents a function (from the domain of triplesets to the domain of triplesets).

I have experimented a little with embedded rules but it does not seem very promising.

6.5.Completeness and soundness of the engine

The algorithm used in the engine is a resolution algorithm. Solutions are searched by starting with the axiom file and the negation of the lemma (query). When a solution is found a constructive proof of the lemma has also been found in the form of a contradiction that follows from a certain number of traceable unification steps as defined by the theory for first order resolution. Thus the soundness of the engine can be concluded.

In general completeness of a RDF engine is not necessary or even possible. It can be possible for subsets of RDF and, for certain applications, it might be necessary. It is an engine for verification of proofs; no assurance can be given if a certain proof is refused about the validity of the proof. If it is accepted the garantuee is given of its correctness.

The unification algorithm clearly is decidable as a consequence of the simple ternary structure of N3 triples. The unification algorithm in the module RDFUnify.hs can be seen as a proof of this.

6.6.RDFProlog

I have defined a prolog-like structure by the module RDFProlog.hs (for a sample see chapter 10. applications) where e.g. name(company,”Test”) is translated to the triple: (company,name,”Test”). This language is very similar to the language DATALOG that is used for a deductive access to relational databases [ALVES].

The alphabet of DATALOG is composed of three sets: VAR,CONST and PRED

denoting respectively variables, constants and predicates. One notes the absence of functions. Also predicates are not nested.

In RDFProlog the general format of a rule is:

predicate-1(subject-1,object-1),…, predicate-n(subject-n,object-n) :>

predicate-q(subject-q,object-q), …,predicate-z(subject-z,object-z).

where all predicates,subjects and objects can be variables.

The format of a fact is:

predicate-1(subject-1,object-1),…, predicate-n(subject-n,object-n).

where all predicates,subjects and objects can be variables.

This is a rule without antecedents.

Variables begin with capital letters.

All clauses are to be entered on one line. A line with a syntax error is neglected. This can be used to add comment.

The parser is taken from [JONES] with minor modifications.

6.7.From Horn clauses to RDF

6.7.1. Introduction

Doubts have often been uttered concerning the expressivity of RDF. An inference engine for the World Wide Web should have a certain degree of expressiveness because it can be expected, as shown in chapter one, that the degree of complexity of the applications could be high.

I will show in the next section that all Horn clauses can be transformed to RDF, perhaps with the exeception of functions. This means that RDF has at least the same expressiveness as Horn clauses.

6.7.2. Elaboration

For Horn clauses I will use the Prolog syntax; for RDF I will use Notation 3.

I will discuss this by giving examples that can be easily generalized.

0-ary predicates:

Prolog:
 Venus.

RDF:
 [:Tx :Venus] or :Ty :Tx :Venus.

where :Ty and :Tx are created anonymous URI’s.

Unary predicates:

Prolog:
Name(“John”).

RDF:

[:Name “John”] or :Ty :Name “John”.
Binary predicates:

Prolog:
Author(book1, author1).

RDF:

:book1 :Author :author1.
Ternary and higher:

Prolog:
Sum(a,b,c).

RDF:

:Ty :Sum1 :a.

:Ty :Sum2 :b.

:Ty :Sum3 :c.

where :Ty represents the sum.

Embedded predicates: I will give an extensive example.

In Prolog:

diff(plus(A,B),X,plus(DA,DB)) :- diff(A,X,DA), diff(B,X,DB).

 diff(5X,X,5).

 diff(3X,X,3).

and the query:

diff(plus(5X ,3X),X,Y).

The solution is: Y = 8.

This can be put in RDF but the source is rather more verbose.
The result is given in fig. 6.3. Comment is preceded by #.

This is really very verbose but... it can be automated and it does not necessarily have to be less efficient because special measures are possible for enhancing the efficiency due to the simplicity of the format.

So the thing to do with embedded predicates is to externalize them i.e. to make a separate predicate.

What remains are functions:

Prolog:

p(f(x),g).

RDF:

:Tx :f :x.

:Tx :p :g.
or first: replace p(f(x),g) with p(f,x,g) and then proceed as before.

Hayes in [RDFRULES] warns however that this way of replacing a function with a relation can cause problems when the specific aspects of a function are used i.e. when only one value is needed.

6.8. Comparison with Prolog and Otter

6.8.1. Comparison of Prolog with RDFProlog

Differences between Prolog and RDFProlog are:

1) predicates can be variables in RDFProlog:

 P(A,B),P(B,C) :> P(A,C).

 This is not permitted in Prolog.

These difference is not very fundamental as anyhow using this feature does not produce very good programs. Especially this point can very easily lead to combinatorial explosion.

The RDF Graph:

 {?y1 :diff1 ?A.

?y1 :diff2 ?X.

?y1 :diff3 ?DA.

diff(A,X,DA)

?y2 :diff1 ?B.

?y2 :diff2 ?X.

?y2 :diff3 ?DB.

diff(B,X,DB)

?y3 :plus1 ?A.

?y3 :plus2 ?B.

plus(A,B)

?y4 :diff1 ?y3.

?y4 :diff2 ?X.

#diff(plus(A,B),X,

?y5 :plus1 ?DA.

?y5 :plus2 ?DB.}

plus(DA,DB)

log:implies{

?y4 :diff3 ?y5.}.

,plus(DA,DB)) -- This was the rule part.

:T1 :diff1 :5X.

here starts the data part

:T1 :diff2 :X.

:T1 :diff3 :5.

diff(5X,X,5).

:T2 :diff1 :3X.

:T2 :diff2 :X.

:T2 :diff3 :3.

diff(3X,X,3).

:T4 :plus1 :5X.

:T4 :plus2 :3X.

plus(5X,3X).

:T5 :diff1 :T4.

:T5 :diff2 :X.

diff(T4,X,

:T6 :plus1 :5.

:T6 :plus2 :3.

plus(5,3)

The query:

:T5 :diff3 ?w.

,Y))

The answer:

:T5 :diff3 :T6.

Fig. 6.3. A differentiation in RDF.

 2) RDFProlog is 100% declarative. Prolog is not because the sequence of declarations has importance in Prolog.

3) RDFProlog does not have functions; it does not have nested predicates. I have shown above in 6.7. that all Horn clauses can be put into RDF and thus into RDFProlog.

4) RDFProlog can use global variables. These do not exist in Prolog.

6.8.3. Otter

 Otter is a different story [WOS]. Differences are:

1) Otter is a full blown theorem prover: it uses a set of different strategies that can be influenced by the user as well as different resolution rules:hyperresolution, binary resolution, …. It also uses equality reasoning.

2) Otter is a FOL reasoner. Contrary to RDFProlog it does not use constructive logic. It reduces expressions in FOL to conjunctive normal form .

3) Lists and other builtins are available in Otter.

4) Programming in Otter is difficult.

6.9.Differences between RDF and FOL

6.9.1. Anonymous entities

Take the following declarations in First Order Logic (FOL):

(car: owns(John,car) (brand(car,Ford)

(car:brand(car,Opel)

and the following RDF declarations:

(John,owns,car)

(car,brand,Ford)

(car,brand,Opel)

In RDF this really means that John owns a car that has two brands (see also the previous chapter). This is the consequence of the graph model of RDF. A declaration as in FOL where the atom car is used for two brands is not possible in RDF. In RDF things have to be said a lot more explicitly:

(John,owns,Johns_car)

(Johns_car,is_a,car)

(car,has,car_brand)

(Ford,is_a,car_brand)

(Opel,is_a,car_brand)

(car_brand,is_a,brand)

This means that it is not possible to work with anonymous entities in RDF.

On the other hand given the declaration:

(car:color(car,yellow)

it is not possible to say whether this is Johns car or not.

In RDF:

color(Johns_car,yellow)

So here it is necessary to add to the FOL declaration:

(car:color(car,yellow) (owns(John,car).

6.9.2.‘not’ and ‘or’

Negation and disjunction are two notions that have a connection. If the disjunction is exclusive then the statement: a cube is red or yellow implies that, if the cube is red, it is not_yellow, if the cube is yellow, it is not_red.

If the disjunction is not exclusive then the statement: a cube is red or yellow implies that, if the cube is red, it might be not_yellow, if the cube is yellow, it might be not_red.

Negation by failure means that, if a fact cannot be proved, then the fact is assumed not to be true [ALVES]. In a closed world assumption this negation by failure is equal to the logical negation. In the internet an open world assumption is the rule and negation by failure should be simply translated as: not found.

It is possible to define a not as a property. (owner(John,Rolls) is implemented as: not_owner(John,Rolls).

I call this negation by declaration. Contrary to negation by failure negation by declaration is monotone and corresponds to a FOL declaration.

Suppose the FOL declarations:

(owner(car,X)(poor(X).

owner(car,X)(rich(X).

(owner(car,Guido).

and the query:

poor(Guido).

In RDFProlog this becomes:

not_owner(car,X) :> poor(X).

owner(car,X) :> rich(X).

not_owner(car,Guido).

and the query:

poor(Guido).

The negation is here really tightly bound to the property. The same notation as for FOL could be used in RDFProlog with the condition that the negation is bound to the property.

Now lets consider the following problem:

poor(X) :> not_owner(car,X).

rich(X) :> owner(car,X).

poor(Guido).

and the query:

owner(car,Guido).

My engine does not give an answer to this query. This is the same as the answer ‘don’t know’. A forward reasoning engine would find: not_owner(car,Guido), but this too is not an answer. However when the query is: not_owner(car,Guido) the answer is ‘yes’. So the response really is: not_owner(car,Guido). So, when a query fails, the engine should then try the negation of the query. When that fails also, the answer is really: ‘don’t know’.

This implies a tri-valued logic: a query is true i.e. a solution can be constructed, a query is false i.e. a solution to the negation of the query can be constructed or the answer to a query is just: I don’t know.

The same procedure can be followed with an or. I call this or by declaration.

Take the following FOL declaration: color(yellow) (color(blue).

With or by declaration this becomes:

color(yellow_or_blue).

color(yellow),color(not_blue) (color(yellow_or_blue).

color(not_yellow),color(blue) (color(yellow_or_blue).

color(yellow),color(blue) (color(yellow_or_blue).

Note that a declarative not must be used and that three rules have to be added. An example of an implementation of these features can be found in chapter 10, the example of the Alpine Sports Club.

This way of implementing a disjunction can be generalized. As an example take an Alpine club. Every member of the club is or a skier, or a climber. This is put as follows in RDFProlog:

property(skier).

property(climber).

class(member).

subPropertyOf(sports,skier).

subPropertyOf(sports,climber).

type(sports,or_property).

climber(John).

member(X) :> sports(X).

subPropertyOf(P1,P),type(P1,or_property),P(X) :> P1(X).

The first rule says: if X is a member then X has the property sports.

The second rule says: if a property P1 is an or_property and P is a subPropertyOf P1 and X has the property P then X also has the property P1.

The query: sports(John) will be answered positively.

The implementation of the disjunction is based on the creation of a higher category which is really the same as is done in FOL:

(x:skier(X) (climber(X),

only in FOL the higher category remains anonymous.

A conjunction can be implemented in the same way. This is not necessary as conjunction is implicit in RDF.

The disjunction could also be implemented using a builtin e.g.:

member(club,X) :> or(X,list(skier,climber))

Here the predicate or has to be interpreted by the inference engine, that needs also a buitlin list predicate. The engine should then verify whether X is a skier or a climber or both.

6.9.3.Proposition

I propose to extend RDF with a negation and a disjunction in a constructive way:

Syntactically the negation is represented by a not predicate in front of a predicate in RDFProlog:

not(a(b, c)).

and in Notation 3 by a not in front of a triple:

not{:a :b :c.}.

Semantically this negation is tied to the property and is identical to the creation of an extra property not_b that has the meaning of the negation of b. Such a triple is only true when it exists or can be deduced by rules.

Syntactically the disjunction is implemented with a special ‘builtin’ predicate or.

In RDFProlog if the or is applied to the subject:

p(or(a,b),c).

or to the object:

p(a,or(b,c)).

or to the predicate:

or(p,p1)(a,b).

and in Notation 3:

{:a :p or(:b,:c)}.

In RDFProlog this can be used in place of the subject or object of a triple; in Notation 3 in place of subject, property or object.

Semantically in RDFProlog the construction p(a,or(b,c)) is true if there exists a triple p(a,b) or there exists a triple p(a,c).

Semantically in Notation 3 the construction {:a :p or(:b,:c)}. is true when there exists a triple {:a :p :b} or there exists a triple {:a :p :c}.

It is my opinion that these extensions will greatly simplify the translation of logical problems to RDF while absolutely not modifying the data model of RDF.

I also propose to treat negation and disjunction as properties. For negation this is easy to understand: a thing that is not yellow has the property not_yellow. For disjunction this can be understood as follows: a cube is yellow or black. The set of cubes however has the property yellow_or_black. In any case a property is something which has to be declared. So a negation and disjunction only exist when they are declared.

6.10.Logical implication

6.10.1.Introduction

Implication might seem basic and simple; in fact there is a lot to say about. Different interpretations of implication are possible.

6.10.2.RDF and implication

Material implication is implication in the classic sense of First Order Logic. In this semantic interpretation of implication the statement ‘If dogs are reptiles, then the moon is spherical’ has the value ‘true’. There has been a lot of criticism about such interpretation. The critic concerns the fact that the premiss has no connection whatsoever with the consequent. This is not all. In the statement ‘If the world is round then computer scientists are good people’ both the antecedent and the consequent are, of course, known to be true, so the statement is true. But there is no connection whatsoever between premiss and consequent.

In RDF I can write:

(world,a,round_thing) implies (computer_scientists,a,good_people).

This is good, but I have to write it in my own namespace, let’s say: namespace = GNaudts. Other people on the World Wide Web might judge:

Do not trust what this guy Naudts puts on his web site.

So the statement is true but…

Anyhow, antecedent and consequent do have to be valid triples i.e. the URI’s constituting the subject, property and object of the triples do have to exist. There must be a real and existing namespace on the World Wide Web where those triples can be found. If e.g. the consequent generates a non-existing namespace then it is invalid. It is possible to say that invalid is equal to false, but an invalid triple will be just ignored. An invalid statement in FOL i.e. a statement that is false will not be ignored.

From all this it can be concluded that the Semantic Web will see a kind of process of natural selection. Some sites that are not trustworthy will tend to dissappear or be ignored while other sites with high value will survive and do well. It is in this selection that trust will play a fundamental role, so much that I dare say: without trust systems, no Semantic Web.

Strict implication or entailment : if p(q then, necessarily, if p is true, q must be true. Given the rule (world,a,round_thing) implies (computer_scientists, a,good_people), if the triple (world,a,round_thing) exists then, during the closure process the triple (computer_scientists, a,good_people) will actually be added to the closure graph. So, the triple exists then, but is it true? This depends on the person or system who looks at it and his trust system.

If the definition of rules given in chapter 5 is considered as a modus ponens then it does not entail the corresponding modus tollens. In classic notation: a(b does not entail (b ((a. If a constructive negation as proposed before is accepted, then this deduction of modus tollens from modus ponens could perhaps be accepted.

6.10.3.Conclusion

The implication defined in chapter 6 should be considered a strict implication but, given trust systems, its truth value will depend on the trust system. A certain trust system might say that this triple is ‘true’, it might say that it is ‘false’ or it might say that it has a truth value of ‘70%’.

6.11. Paraconsistent logic

The logic exposed in the section 6.9. shows characteristics of paraconsistent logics [STANDARDP].

Most paraconsistent logics can be defined in terms of a semantics which allows both A and (A to hold in an interpretation. The consequence of this is that ECQ fails. ECQ or ex contradictione quodlibet means that anything follows from a contradiction. An example of a contradiction in RDF is:

(pinguin,a,flying_bird) and (pinguin,a,non_flying_bird).
Clearly, RDF is paraconsistent in this aspect. ECQ does not hold, which is a good feature. Contradictions can exist without them leading to whatever conclusion. This poses then, of course, the problem of their detection.

In many paraconsistent systems the Disjunctive Syllogism fails also. The Disjunctive Syllogism is defined as the inference rule:

{A, (A (B} (B

(A (B is equivalent with A(B.

This Disjunctive Syllogism does hold for the system proposed in this thesis. It is to be noted that given A and A(B that it must be possible to construct B i.e. produce a valid triple.

6.12. RDF and constructive logic

RDF is more ‘constructive’ than FOL. Resources have to exist and receive a name. Though a resource can be anonymous in theory, in practical inferencing it is necessary to give it an anonymous name.

A negation cannot just be declared; it needs to receive a name. Saying that something is not yellow amounts to saying that it has the property not_yellow.

The set of all things that have either the property yellow or blue or both needs to be declared in a superset that has a name.

For a proof of A ((A either A has to be proved or (A has to be proved (e.g. an object is yellow or not_yellow only if this has been declared).

This is the consequence of the fact that in the RDF graph everything is designated by a URI.

The BHK-interpretation of constructive logic states:

(Brouwer, Heyting, Kolmogorov) [STANDARD]

a) A proof of A and B is given by presenting a proof of A and a proof of B.

b) A proof of A or B is given by presenting either a proof of A or a proof of B or both.

c) A proof of A (B is a procedure which permits us to transform a proof of A into a proof of B. By the closure procedure described in chapter 5 implication is really constructive because it is defined as a construction: add the consequents of the rule to the graph!

d) The constant false has no proof.

If by proof of A is understood that A is a valid triple (the URI’s of the triple are existing), then RDF as described above follows the BHK interpretation. Item c follows from the definition of a rule as the replacement of a subgraph defined by the antecedents by a subgraph defined by the consequents. The constant false does not exist in RDF.

Because of the way a solution to a query is described in this thesis (chapter 5) as a subgraph of a closure graph, the logic is by definition constructive. The triples constituting the solution have to be constructed, be it by forward or backwards reasoning. The triples of the solution do have to exist. This is different from FOL where a statement can be true of false, but the elements of the statement do not necessarily need to exist.

6.13. The Semantic Web and logic

One of the main questions to consider when speaking about logic and the Semantic Web is the logical difference between an open world and a closed world.

In a closed world it is assumed that everything is known. A query engine for a database e.g. can assume that all knowledge is in the database. Prolog also makes this assumption. When a query cannot be answered Prolog responds: “No”, where it could also say: ”I don’t know”.

In the world of the internet it is not generally possible to assume that all facts are known. Many data collections or web pages are made with the assumption that the user knows that the data are not complete.

Thus collections of data are considered to be open. There are some fundamental implications of this fact:

1) It is impossible to take the complement of a collection as: a) the limits of the collection are not known and b) the limits of the universe of discourse are not known.

2) Negation can only be applied to known elements. It is not possible to speak of all resources that are not yellow. It is possible to say that resource x is not yellow or that all elements of set y are not yellow.

3) The universal quantifier does not exist. It is impossible to say : for all elements in a set or in the universe as the limits of those entities are not known. The existential quantifier, for some, really means : for all those that are known.
4) Anonymous resources cannot be used in reasoning. Indeed, in RDF it is possible to declare blank nodes but when reasoning these have to be instantiated by a ‘created URI’.

5) The disjunction must be constructive. A proof of a or b is a proof of a, a proof of b or a proof of a and a proof of b. In a closed world it can always be determined whether a or b is true.

This constructive attitude can be extended to mathematics. The natural numbers, reel numbers, etc… are considered to be open sets. As such they do not have cardinal numbers. What should be the cardinal number of an open set?

If a set of natural numbers is given and the complement is taken, then the only thing that can be said is that a certain element that is not in the set belongs to the complement. Thus only known elements can be in the complement and the complement is an open set.

The notion ‘all sets’ exists; the notion ‘set of all sets’ exists; however it is not possible to construct this set so constructively the set of all sets does not exist, neither does the Russell paradox.

This is not an attack on classic logic but the goal is to make a logic theory that can be used by computers.

6.14.OWL-Lite and logic

6.14.1.Introduction

OWL-Lite is the lightweight version of OWL, the Ontology Web Language. I will investigate how OWL-Lite can be interpreted constructively.

I will only discuss OWL concepts that are relevant for this chapter.

6.14.2.Elaboration

Note: the concepts of RDF and rdfs form a part of OWL.

rdfs:domain: a statement (p,rdfs:domain,c) means that when property p is used, then the subject must belong to class c.

Whenever property p is used a check has to be done to see if the subject of the triple with property p really belongs to class c. Constructively, only subjects that are declared to belong to class c or deduced to belong to, will indeed belong to class c. There is no obligation to declare a class for a subject. If no class is declared, the class of the subject is rdf:Resource. The consequence is, that though a subject might be of class c but is not declared to belong to the class, then the property p can not apply to this subject.

rdfs:range: a statement (p,rdfs:range,c) means that when property p is used, then the object must belong to class c. The same remarks as for rdfs:domain are valid.

owl:disjointWith: applies to sets of type rdfs:class. (c1,owl:disjointWith,c2) means that, if r1 is an element of c1 then it is not an element of c2. When there is no not, it is not possible to declare r1(c2. However, if both a declaration r1(c1 and r1(c2 is given, an inconsistency should be declared.

It must be reminded that in an open world the boundaries of c1 and c2 are not known. It is possible to check the property for a given state of the database. However during the reasoning process, due to the use of rules, the number of elements in each class can change. In forward reasoning it is possible to assess after each step though the efficiency of such processes might be very low. In backwards reasoning tables have to be kept and updated with every step. When backtracking elements have to be added or deleted from the tables.

It is possible to declare a predicate elementOf and a predicate notElementOf and then make a rule:

{(r1,elementOf,c1)}implies{(r1,notElementOf,c2)}

and a rule:

{(r1,elementOf,c1),(r1,elementOf,c2)}implies{(this, a, owl:inconsistency)}

owl:complementOf: if (c1,owl:complementOf,c2) then class c1 is the complement of class c2. In an open world there is no difference between this and owl:disjointWith because it is impossible to take the complement in a universum that is not closed.

6.15.The World Wide Web and neural networks

It is possible to view the WWW as a neural network. Each HTTP server represents a node in the network. A node that gets much queries is reinforced i.e. it gets a higher place in search robots, it will receive more trust either unformally through higher esteem either formally in an implemented trust system, more links will refer to it.

On the other hand a node that has low trust or attention will be weakened. Eventually hardly anyone will consult it. This is comparable to neural cells where some synapses are reinforced and others are weakened.

6.16.RDF and modal logic

6.16.1.Introduction

Following [BENTHEM, STANFORDM] a model of possible worlds M = <W,R,V> for modal propositional logic consists of:

a) a non-empty set W of possible worlds

b) a binary relation of accessibility R between possible worlds in W.

c) a valuation V that gives, in every possible world, a value Vw(p) to each proposition letter p.

This model can be used with adaptation for the World Wide Web in two ways. A possible world is then equal to a XML namespace.

1) for the temporal change between two states of an XML namespace

2) for the comparison of two different namespaces

This model can also be used to model trust.

6.16.2.Elaboration

Be nst1 the state of a namespace at time t1 and nst2 the state of the namespace at time t2.

Then the relation between nst1 and nst2 is expressed as R(nst1,nst2)
When changing the state of a namespace inconsistencies may be introduced between one state and the next. If this is the case one way or another users of this namespace should be capable of detecting this. Heflin has a lot to say about this kind of compatibilities between ontologies [HEFLIN].

If ns1 and ns2 are namespaces there is a non-symmetrical trust relation between the namespaces.

R(ns1,ns2,t1) is the trust that ns1 has in ns2 and t1 is the trust factor.

R(ns2,ns1,t2) is the trust that ns2 has in ns1 and t2 is the trust factor.

The truth definition for a modal trust logic is then (adapted following [BENTHEM]): Note: VM,w(p) = the valuation following model M of proposition p in world w.

a) VM,w(p) = Vw(p) for all proposition letters p.
b) VM,w ((() = 1 (VM,w(() : This will only be applicable when a negation is introduced in RDF. This could be applicable for certain OWL concepts.

c) VM,w(((() = 1 (VM,w(() = 1 and VM,w(() = 1 : this is just the conjunction of statements in RDF.

d) VM,w((() = 1 (for every w’ (W: if Rww’ then VM,w(() = 1
This means that a formula should be valid in all worlds. This is not applicable for the World Wide Web as all worlds are not known.

e) VM,w,t((() = 1 (there is a w’ (W such that Rww’ and trust(VM,w’(() = 1) >t : this means that (((possible () is true if it is true in some world and the trust of this ‘truth’ is greater than the trust factor.

Point e is clearly the fundamental novelty for the World Wide Web interpretation of modal logic.

In a world w a triple t is true when it is true in w or any other world w’ taking into account the trust factor.

This model can be used also to model neural networks. A neuron is a cell that has one dendrite and many axons. The axons of one cell connect to the dendrites of other cells. An axon fires when a certain threshold factor is surpassed. This factor is to be compared with the trust factor of above and each axon-dendrite synaps is a possible world. Possible worlds in this model evidently are grouped following the fact whether the synapses belong to the same neuron or not. This gives a two-layered modal logic. When a certain threshold of activation of the dendrites is reached a signal is sent to the axons that will fire following their proper threshold. Well, at least, this is a possible odel for neurons. I will not pretend that this is what happens in ‘real’ neurons. The interest here is only in the possibilities for modelling aspects of the Semantic Web.

Certain properties about implication can be deduced or negated for example:

((p(q) (((p ((q) meaning :

If p(q is true in a world does not entail that p is true in a world and that q is true in a world.

Normally the property of transitivity will be valid between trusted worlds:

(p (((p

(p in world w1 means that p is trusted in a connected world w2.

((p in world w1 means that p is trusted in a world w3 that is connected to w2.

Trusted worlds are all worlds for which the accumulation of trust factors f(t1,t2,…,tn) is not lower than a certain threshold value.

6.17. Logic and context

Take the logic statements in first order logic:

(x(y:man(x) & woman(y) & loves(x,y)

(x(y:man(x) & woman(y) & loves(x,y)

The first means: ‘all men love a woman’ and the second: ‘there is at least one man who loves all women’. Clearly this is not the same meaning. However, constructively (as implemented in my engine) they are the same and just represent all couples (x,y) for which a fact: man(x) & woman(y) & loves(x,y) can be found in the RDF graph. In order to maintain the meaning as above it should be indicated that reasoning is in a closed world. This is the same as stating that man and woman are closed sets, i.e. it is accepted that all members of the set are (potentially) known.

It is interesting to look at these statements as scientific hypotheses. A scientific hypothesis is seen in the sense of Popper [POPPER]. A hypothesis is not something which is true but of which the truth can be denied. This means it is possible to find a negation of the hypothesis.

‘All men love a woman’ is a scientific hypothesis because there might be found a man who does not love a woman. ‘There exists at least a man who loves all women’ is not a scientific hypothesis because it is impossible to find a denial of this statement. This is true in an open world however. If the set of man was closed it would be known for all men whether they love a woman or not. This means that scientific hypotheses are working in an open world.

I only mention Popper here to show that the truth of a statement can depend on the context.

It is possible to define a logic for the World Wide Web(open world), it is possible to define a logic for a database application(closed world), it is possible to define a logic for a philosophical thesis (perhaps an epistemic logic),… What I want to say is: a logic should be defined within a certain context.

So I want to define a logic in the context ‘reference inference engine’ together with a certain RDF dataset and RDF ruleset. Depending on the application this context can be further refined. One context could then be called the basic RDF logic context. In this context the logic is constructive with special rules regarding sets. Thus the Semantic Web needs a system of context dependent logic.

It is then possible to define for the basic context:

A closed set is a set for which it is possible to enumerate all elements of the set in a finite time and within the context: the engine,the facts and the rules. An open set is the a set that is not closed. With this definition then e.g. the set of natural numbers is not closed. In another, more mathematical context, the set of natural numbers might be considered closed.

Edmonds gives some philosophical background about context and truth [EDMONDS]. He adheres to what he calls ‘strong contextualism’ meaning that every logic statement has to be interpreted within a certain context. He thus denies that there are absolute truths.

6.18. Monotonicity

Another aspect of logics that is very important for the Semantic Web is the question whether the logic should be monotonic or nonmonotonic.
Under monotonicity in regard to RDF I understand that, whenever a query relative to an RDF file has a definite answer and another RDF file is merged with the first one , the answer to the original query will still be obtained after the merge. As shown before there might be some extra answers and some of those might be contradictory with the first answer. However this contradiction will clearly show.

If the system is nonmonotonic some answers might dissappear; other that are contrdictory with the first might appear. All this would be very confusing.

Here follows an example problem where ,apparently, it is impossible to get a solution and maintain the monotonicity.

I state the problem with an example.

A series of triples:

(item1,price,price1),(item2,price,price2), etc…

is given and a query is done asking for the lowest price.

Then some more triples are added:

(item6,price,price6),(item7,price,price7), etc…

and again the query is done asking for the lowest price.

Of course, the answer can now be different from the first answer. Monotonicity as I defined it in chapter 5 would require the first answer to remain in the set of solutions. This obviously is not the case.

Clearly however, a Semantic Web that is not able to perform an operation like the above, cannot be sactisfactory.

The solution

I will give an encoding of the example above in RDFProlog and then discuss this further.

List are encoded with rdf:first for indicating the head of a list and rdf:rest for indicating the rest of the list. The end of a list is encoded with rdf:nil.

I suppose the prices have already been entered in a list what is in any case necessary.

rdf:first(l1,”15”).

rdf:rest(l1,l2).

rdf:first(l2,”10”).

rdf:rest(l2,rdf:nil).

rdf:first(L,X), rdf:rest(L,rdf:nil) :> lowest(L,X).

rdf:first(L,X), rdf:rest(L,L1), lowest(L1,X1), lesser(X,X1) :> lowest(L,X).

rdf:first(L,X), rdf:rest(L,L1), lowest(L1,X1), lesser(X1,X) :> lowest(L,X1).

The query is:

lowest(l1,X).

giving as a result:

lowest(l1,”10”).

Let’s add two prices to the list. The list then becomes:

rdf:first(l1,”15”).

rdf:rest(l1,l2).

rdf:first(l2,”10”).

rdf:rest(l2,l3).

rdf:first(l3,”7”).

rdf:rest(l3,l4).

rdf:first(l4,”23”).

rdf:rest(l4,rdf:nil).

The query will no give as a result:

lowest(l1,”7”).

Monotonicity is not respected. However, from the first RDF graph a triple has disappeared:

rdf:rest(l2,rdf:nil).

So the conditions for monotonicity as I defined in chapter 5 are not respected either. Some operations apparently cannot be executed while at the same time respecting monotonicity. Especially, monotonicity cannot be expected when a query is repeated on a graph that does not contain the first graph as a subgraph. Clearly, however, these operations might be necessary. A check is necessary in every case to see whether this breaking of monotonicity is permitted.

6.19. Learning

Though this is perhaps not directly related to logic, it is interesting to say something about learning. Especially the Soar project [LEHMAN] gives useful ideas concerning this subject. Learning in itself is not difficult. An inference engine can keep all results it obtains. However this will lead to an avalanche of results that are not always very usefull. Besides that, the learning has to be done in a structured way, so that what is learned can be effectively used.

An important question is when to learn. In Soar learning occurs when there is an impasse in the reasoning process. The same attitude can be taken in the Semantic Web. Inconsistencies that arise are a special kind of impasse.

In three ways learning can take place when confronted with an inconsistency:

1) the query can be directed to other agents

2) a search can be done in a history file in the hope to find similar situations

3) a question can be asked at the human user.

In all ways the result of the learning will be added to the RDF graph, possibly in the form of rules.

6.20. Conclusion

As was shown above the logic of RDF is compatible with the BHK logic. It defines a kind of constructive logic. I argue that this logic must be the basic logic of the Semantic Web. Basic Semantic Web inference engines should use a logic that is both constructive, based on an open world assumption, and monotonic.

If, in some applications, another logic is needed, this should be clearly indicated in the RDF datastream. In this way basic engines will ignore these datastreams.

Chapter 7. Existing software systems

7.1. Introduction

After discussing the characteristics of RDF inferencing it is time to review what exists already.

I make a difference between a query engine that just does querying on a RDF graph but does not handle rules and an inference engine that also handles rules.

In the literature this difference is not always so clear.

The complexity of an inference engine is a lot higher than a query engine. This is because rules create an extension of the original graph producing a closure graph (see chapter 5). In the course of a query this closure graph or part of it has to be reconstructed. This is not necessary in the case of a query engine.

Rules also suppose a logic base that is inherently more complex than the logic in the situation without rules. For a query engine only the simple principles of entailment on graphs are necessary (see chapter 5).

I will not discuss query engines as the main goal of this thesis is to discuss rules and inferencing.

RuleML is an important effort to define rules that are usable for the World Wide Web [GROSOP].

The Inference Web [MCGUINESS2003] is a recent realisation that defines a system for handling different inferencing engines on the Semantic Web.

7.2. Inference engines

7.2.1.Euler

Euler is the program made by Deroo [DEROO]. It does inferencing and also implements a great deal of OWL (Ontology Web Language).

The program reads one or more triple databases that are merged together and it also reads a query file. The merged databases are transformed into a linked structure (Java objects that point to other Java objects). The philosopy of Euler is thus graph oriented.

This structure is different from the structure of RDFEngine. In my engine the graph is not described by a linked structure but by a collection of triples, a tripleset.

The internal mechanism of Euler is in accordance with the principles exposed in chapter 5.

Deroo also made a collection of test cases upon which I based myself for testing RDFEngine.

7.2.2. CWM

CWM is the program of Berners-Lee.

It is based on forward reasoning.

CWM makes a difference between existential and universal variables[BERNERS]. RDFEngine does not make that difference. It follows the syntaxis of Notation 3: log:forSome for existential variables, log:forAll for universal variables. As I explained in chapter 6 all variables in my engine are quantified in the sense: forAllThoseKnown. Blank or anonymous nodes are instantiated with a unique URI.

CWM makes a difference between ?a for a universal, local variable and _:a for an existential, global variable. RDFEngine maintains the difference between local and global but not the quantification.

7.2.3. TRIPLE

TRIPLE is based on Horn logic and borrows many features from F-Logic [SINTEK].

TRIPLE is the successor of SiLRI.

7.3. RuleML

7.3.1. Introduction

RuleML is an effort to define a specification of rules for use in the World Wide Web.

7.3.2. Technical approach

The kernel of RuleML are datalog logic programs (see chapter 6) [GROSOF]. It is a declarative logic programming language with model-theoretic semantics. The logic is based on Horn logic.

It is a webized language: namespaces or defined as well as URI’s.

Inference engines are available.

There is a cooperation between the RuleML Iniative and the Java Rule Engines Effort.

7.4. The Inference Web

7.4.1. Introduction

The Inference Web was introduced by a series of recent articles [MCGUINESS2003].

When the Semantic Web develops it is to be expected that a variety of inference engines will be used on the web. A software system is needed to ensure the compatibility between these engines.

The inference web is a software system consisting of:

a web based registry containing details on information sources and reasoners called the Inference Web Registry.

1) an interface for entering information in the registry called the Inference Web Registrar.

2) a portable proof specification

3) an explanation browser.

7.4.2. Details

In the Inference Web Registry data about inference engines are stored. These data contain details about authoritative sources, ontologies, inference engines and inference rules. In the explanation of a proof every inference step should have a link to at least one inference engine.

1) The Web Registrar is an interface for entering information into the Inference Web Registry.

2) The portable proof specification is written in the language DAML+OIL. In the future it will be possible to use OWL. There are four major components of a portable proof:

a) inference rules

b) inference steps

c) well formed formulae

d) referenced ontologies

 These are the components of the inference process and thus produces the proof of the conlusion reached by the inferencing.

3) The explanation browser show a proof and permits to focus on details, ask additional information, etc…

7.4.3. Conclusion

I believe the Inference Web is a major and important step in the development of the Semantic Web. It has the potential of allowing a cooperation between different inference engines. It can play an important part in establishing trust by giving explanations about results obtained with inferencing.

7.5. Query engines

7.5.1. Introduction

RDFEngine uses rather simple query expressions: they are just subgraphs. Many RDF query engines exists that use much more sophisticated query languages. Many of these have been inspired by SQL [RQL]. Besides giving a subgraph as a query, many other extra features are often implemented. E.g. for queries that result in an answer containing mathematical values, certain boundaries can be imposed on the resulting query.

There are many RDF query engines. I will only discuss some of the most important.

7.5.2. DQL

DAML Query Language (DQL) is a formal language and protocol for a querying agent and an answering agent to use in conducting a query-answering dialogue using knowledge represented in DAML+Oil.

The DQL specification [DQL] contains some interesting notions:

a) variables in a query can be: must-bind, may-bind or don’t-bind. Must-bind variables must be bound to a resource. May-bind variables may be bound. Don’t-bind variables may not be bound.

b) The set of all answers to a query is called the response set. In general, answers will be delivered in group, each of which is called an answer bundle. An answer bundle contains a server continuation that is either a process handle that can be used to get the next answer bundle or a termination token indicating the end of the response.

7.5.3. RQL

RQL uses a SQL-like syntax for querying. Following features are worth mentioning:

a) RDF Schema is built-in. Class-instance relationships, classe/property subsumption, domain/range and such are adressed by specific language constructs [RQL]. This means that the query engine does inferencing. It will e.g. deduce all classes a resource belongs to by following the subclass relationships.

b) RQL has operators: comparison and logical operators.
c) RQL has set operations: union, intersection and difference.
An example:

select X, Y

from {X : cult:cubist } cult:paints {Y}

using namespace

 cult = http://www.icom.com/schema.rdf#
The query asks for the paintings of all painters who are cubists.

7.5.4. XQuery

XQuery is a programming language[BOTHNER]. Everything in XQuery is an expression which evaluates to a value. Some characteristics are:

1) The primitive data types in Xquery are the same as for XML Schema.

2) XQuery can represent XML values. Such values are: element, attribute, namespace, text, comment, processing-instruction and document.

3) XQuery expressions evaluate to sequences of simple values.

4) XQuery borrows path expressions from Xpath. A path expression indicates the location of a node in a XML tree.

5) Iterating over sequences is possible in XQuery (see the example).

6) It is possible to define functions in XQuery.

7) Everything reminds of functional programming.

Example:

for $c in customers

for $o in orders

where $c.cust_id=$o.cust_id and $o.part_id="xx"

return $c.name

This corresponds to following SQL statements:

select customers.name

from customers, orders

where customers.cust_id=orders.cust_id

 and orders.part_id="xx"

In Haskell this could be represented by following list comprehension:

[name c| c <- customers, o <- orders, cust_id c == cust_id1 o, part_id o == “xx”]

7.6. Swish

Swish is a software package that is intended to provide a framework for building programs in Haskell that perform inference on RDF data [KLYNE]. Where RDFEngine uses resolution backtracking for comparing graphs, Swish uses a graph matching algorithm described in [Carroll]. This algorithm is interesting because it represents an alternative general way, besides forwards and backwards reasoning, for building a RDF inference engine.

Chapter 8. Optimization.

8.1.Introduction

Optimization can be viewed from different angles.

1) Optimization in forward reasoning is quite different from optimization in backward reasoning (resolution reasoning). I will put the accent on resolution reasoning.

2) The optimization can be considered on the technical level i.e. the performance of the implementation is studied. Examples are: use a compiled version instead of an interpreter, use hash tables instead of sequential access, avoid redundant manipulations etc… Though this point seems less important than the following point (2) I will propose nevertheless two optimizations which are substantial.

3) Reduce as much as possible the number of steps in the inferencing process. Here it is not only tried to stop the combinatorial explosion but it is also tried to minimize the number of unification loops.

There are two further aspects to optimization:

a) Only one solution is needed e.g. in an authentication process the question is asked whether the person is authenticated or not.

b) More than one solution is needed.

In general the handling of these two aspects is not equal.

8.2. Discussion.

I will use the above numbering for referring to the different cases.

A substantial amount of research about optimization has been done in connection with DATALOG (see chapter 6 for a description of DATALOG).

1) Forward reasoning in connection with RDF means the production of the closure graph. I recall that a solution is a subgraph of the closure graph. If e.g. this subgraph contains three triples and the closure involves the addition of e.g. 10000 triples then the efficiency of the process will not be high. The efficiency of the forward reasoning or the bottom-up approach as it is called in the DATALOG world is enhanced considerably by using the magic sets technique [YUREK]. Take the query: grandfather(X,John) asking for the grandfather of John. With the magic sets technique only the ancestors of John will be considered. This is done by rewriting the query and replacing it with more complex predicates that restrict the possible matches. According to some [YUREK] this makes it better than top-down or backwards reasoning.

2) Technical actions for enhancing efficiency. I will only mention here two actions which are specific for the inference engine I developed.

2a) As was mentioned before, the fact that a predicate is always a variable or a URI but never a complex term, permits a very substantial optimization of the engine. Indeed all clauses(triples) can be indexed by their predicate. Whenever a unification has to be done between a goal and the database, all relevant triples can be looked up with the predicate as an index. Of course the match will always have to be done with clauses that have a variable predicate. When this happens in the query then the optimization cannot be done. However such a query normally is also a very general query. In the database however variable predicates occur mostly in general rules like the transitivity rule. In that case it should be possible to introduce a typing of the predicate and then add the typing to the index. In this way, when searching for alternative clauses it will not be necessary to consider the whole database but only the set of selected triples. This can further be extended by adding subjects and objects to the index. Eventually a general typing system could be introduced where a type is determined for each triple according to typing rules (that can be expressed in Notation 3 for use by the engine).

When the triples are in a database (in the form of relational rows) the collection of the alternatives can be done ‘on the fly’ by making an (SQL)-query to the database. In this way part of the algorithm can be replaced by queries to a database.

2b) The efficiency of the processing can be enhanced considerably by working with numbers instead of with labels. A table is made of all possible labels where each label receives a number. A triple is then represented by three integer numbers e.g. (12,73,9). Manipulation (copy,delete) of a triple becomes faster; comparison is just the comparison of integers which should be faster than comparing strings.

3) From the graph interpretation it can be deduced that resolution paths must be searched that are the reverse of closure paths. This implies that a match must be found with grounded triples i.e. first try to match with the original graph and then with the rules. This can be beneficiary for as well the case (3a) (one solution) as (3b) (more than one solution). In the second case it is possible that a failure happens sooner.

It is possible to order the rules following this principle also: try first the rules that have as much grounded resources in their consequents as possible; rules that contain triples like (?a,?p,?c) should be used last.

The entries in the goallist can be ordered following this principle also: put first in the goallist the grounded entries, then sort the rest following the number of grounded resources.

This principle can be used also in the construction of rules: in antecedents and consequents put the triples with the most grounded resources first.

Generally, in rules triples with variable predicates should be avoided. These reduce the efficiency because a lot of triples will unify with these.

The magic set transformation can also be used in backwards reasoning [YUREK].This gives a significant reduction in the number of necessary unifications.

An interesting optimization is given by the Andorra principle [JONES]. It is based on selection of a goal from the goallist. For each goal the number of matches with the database is calculated. If there is a goal that does not match there is a failure and the rest of the goals can be forgotten. If all goals match, then for the next goal take the goal with the least number of matches.

Prolog and my engine take a depth first search approach. Also possible is a breadth first search. In the case only one solution is needed, in general, breadth first search should be more appropriate certainly if the solution tree is very imbalanced. If all solutions must be found then there is no difference. Looping can easily be stopped in breadth first search while a tree is kept and recurrence of a goal can be easily detected.

Typing can substantially reduce the number of unifications. Take e.g. the rule:

{(?p,a,transitiveProperty),(?a,?p,?b),(?b,?p,?c)} implies {(?a,?p,?c)}

Without typing any triple will match with the consequent of this rule. However with typing, the variable ?p will have the type transitiveProperty so that only resources that have the type transitiveProperty or a subtype will match with ?p.

See also the remarks about typing at the end of chapter 5.

RDFEngine implements two optimizations:

1) the rules are placed after the facts in the database

2) for the unification, all triples with the same predicate are retrieved from a hashtable.

Due to a lack of time no further experiments were done.

Chapter 9. Inconsistencies

9.1. Introduction

A lot of things have already been said in chapter 6 dealing with the logics of the Semantic Web.

Two triplesets are inconsistent when:

1) by human judgement they are considered to be inconsistent

2) or, by computer judgement, they are considered to be inconsistent. The judgement by a computer is done using logic. In the light of the RDF gtraph theory a judgement of inconsistency implies a judgement of invalidity of the RDF graph.

9.2. Elaboration

Consider an object having the proeprty ‘color’. An object can have only one color in one application; in another application it can have more than one color. In the first case color can be declared to be an owl:uniqueProperty. This property imposes a restriction on the RDF graph: e.g. the triples T(object,color,red) and T(object,color,blue) cannot occur at the same time. If they do the RDF graph is considered to be invalid. This is the consequence of an implemented logic restriction on an RDF graph:

(subject,property,object,T1,T2, G: T1(object,color,color1) (T2(object,color,color2) (not equal(color1,color2) (element(G,T1) (element(G,T2) (invalid(G)

However in another application this restriction does not apply and an object can have two colors. This has the following consequence: inconsistencies are application dependent . Inconsistencies are detected by applying logic restrictions to two triplesets. If the restriction applies the RDF graph is considered to be invalid. The declaration and detection of inconsistencies is dependent on the logic that is used in the inferencing system.

When a closed world logic is applied, sets have boundaries. This implies that inconsistencies can be detected that do not exist in an open world.

An example: there is a set of cubes with different colors but none yellow. Then the statement: ‘cube x is yellow’ is an inconsistency. This is not true in an open world.

My inference engine does not detect any inconsistencies at all. It can however handle applications that detect inconsistencies. Indeed, as said above, this is only a matter of implementing restrictions e.g. with the rule:

{(cubea,color,yellow)}implies{(this,a,inconsistency)}.

if I have an application that does not permit yellow cubes.

Nevertheless, there might be also inherent logic inconsistencies or contradictions. These however are not possible in basic RDF. By adding a negation, as proposed in chapter 6, these contradictions can arise e.g.

in RDFProlog:

color(cube1,yellow) and not(color(cube1,yellow)).

It is my belief that a negation should be added to RDF in order to create the possibility for detecting inconsistencies.

The more logic is added, the more contradictions of these kind can arise. The implementation of an ontology like OWL is an example.

9.3. OWL Lite and inconsistencies

9.3.1. Introduction

When using basic RDF, inconsistencies can exist but there is no possible way to detect them. Only when an ontology is added, can inconsistencies arise. One of the goals of an ontology is to impose restrictions to the possible values that the partners in a relation can have. In the case of RDF this imposes restrictions on subject and object. The introduction of these restrictions introduces necessarily a kind of negation. In a way a restriction is a negation of some values. However together with the negation the whole set of problems connected with negation is reintroduced. This involves also the problems of open and closed world and of constructive and paraconsistent logic.

Some inconsistencies that can arise when the Ontology Web Language (OWL) is used where already mentionned in chapter 6, although in a different context. In chapter 6 the aim was to study the relationship of OWL with constructive and paraconsistent logic.

9.3.2. Demonstration

rdfs:domain: imposes a restriction on the set to which a subject of a triple can belong.

rdfs:range: imposes a restriction on the set to which an object of a triple can belong.

Here it must be checked whether a URI belongs to a certain class. This belonging must have been declared or it should be possible to infer a triple declaring this belonging, at least in a constructive interpretation. It can not be infered from the fact that the URI does not belong to a complementary class.

owl:sameClassAs: (c1,owl:sameClassAs,c2) is a declaration that c1 is the same class as c2. It is not directly apparent that this can lead to an inconsistency. An example will show this: if a declaration (c1,owl:disjointWith,c2) exist, there is an inconsistency.
owl:disjointWith: this creates an inconsistency if two classes are declared disjoint and the same element is found belonging to both. Other inconsistencies are possible: see example above.

owl:sameIndividualAs and owl:differentIndividualFrom:

(c1,owl:sameIndividualAs,c2) and (c1,owl:differentIndividualFrom,c2) are evidently contradictory.

owl:minimumCardinality and owl:maximumCardinality: these concepts put a restriction on het number of possible values that can occur for a certain property

owl:samePropertyAs, owl:TransitiveProperty,owl:SymmetricProperty: I do not see immediately how this can cause an inconsistency.

9.3.2. Conclusion

Where in the basic RDF implementation of the engine contradictions are only application dependent, from the moment an ontology is implemented, the situation becomes a whole lot more complex. Besides the direct inconsistencies indicated above, the few concepts mentionned can give rise to more inconsistencies when they are interacting one with another. I doubt whether I could give an exhaustive list even when I tried. Certainly, a lot more testing with OWL should be necessary but this is out of scope for this thesis.

9.4. Using different sources

9.4.1.Introduction

 When rules and facts originating from different sites on the internet are merged together into one database, inconsistencies might arise. Two categories can be distinguished:

1) inconsistencies provoked with malignous intent

2) unvoluntary inconsistencies

9.4.2. Elaboration

Category 1: there are, of course a lot of possibilities, and hackers are inventive. Two possibilities:

a) the hacker puts rules on his site or a pirated site which are bound to give difficulties e.g. inconsistencies might already be inherent in the rules.

b) The namespace of someone else is ursurpated i.e. the hacker uses somebody elses namespace(s).

Category 2: unvoluntary errors.

a) syntax errors: these should be detected.

b) logical errors: can produce faulty results or contradictions. But what can be done against a bad rule e.g. a rule saying all mammals are birds? A contradiction will only arise when there is a rule (rules) saying that mammals are not birds or this can be concluded.

This is precisely one of the goals of an ontology: to add restrictions to a description. These restrictions can be checked. If it is declared that an object has a minimum size and a maximum size and somebody describes it with a size greater than the maximum size the ontology checker should detect this.

When inconsistencies are detected, it is important to trace the origin of the inconsistencies (which is not necessarily determined by the namespace). This means all clauses in the database have to be marked. How can the origin be traced back to an originating site?

In this context namespaces are very important. The namespace to which RDF triples belong identify their origin. However a hacker can falsify namespaces. Here again the only way to protect namespaces is by use of cryptographic methods.

When two contradictory solutions are found or two solutions are found and only one is expected, a list of the origins of the clauses used to obtain the solutions can eventually reveal a difference in origin of the clauses. When no solution is found, it is possible to suspect first the least trusted site. How to detect who is responsible?

I belief truth on the Semantic Web is determined by trust. A person believes the sites he trusts. It is therefore fundamental in the Semantic Web that every site can be identified unequivocally. This is far from being so on the present web, leaving the door open for abuses.

Each person or automated program should dispose of a system that ranks the ‘trustworthiness’ of sites, ontologies or persons.

Heflin [HEFLIN] has some ideas on inconsistency. He gives the example: if someone states ‘A’ and another one states ‘not A’, this is a contradiction and all conclusions are possible. However this is not possible in RDF as a ‘not’ does not exist. Somebody might however claim: ‘X is black’ and another one ‘X is white’. This however will not exclude solutions; it will not lead to whatever conclusion; it just can add extra solutions to a query. Those solutions might be semantically contradictory for a human interpreter. If such is not wished ontologies have to be used. If ontologies produce such a contradiction then, of course, there is an incompatibility problem between ontologies.

As a remedy against inconsistency Heflin cites nonmonotonicity. He says:”Often, an implicit assumption in these theories is that the most recent theory is correct and that it is prior beliefs that must change”. This seems reasonable for a closed world; however on the internet is seems more the contrary that is reasonable. As Heflin says: “if anything, more recent information that conflicts with prior beliefs should be approached with skepticism.”, and:

“The field of belief revision focuses on how to minimize the overall change to a set of beliefs in order to incorporate new inconsistent information.”.

What an agent knows is called his epistemic state. This state can change in three ways: by expansion, by revision and by contraction. An expansion adds new non-contradictory facts, a revision changes the content and a retraction retrieves content. But do we, humans, really maintain a consistent set of beliefs? Personally, I don’t think so.

Heflin speaks also about assumption-based truth maintenance systems (ATMS) . These maintain multiple contexts where each context represents a set of consistent assumptions.

The advantage of RDF is that ‘not’ and ‘or’ cannot be expressed, which ensures the monotonicity when merging RDF files. However this is not anymore the case with OWL, not even with OWL Lite.

9.5. Reactions to inconsistencies and trust

Reactions are based on a policy. A policy is in general a set of facts and rules.

Two reactions are possible:

1) the computer reacts completely autonomously based on the rules of the policy.

2) The user is warned. A list of reactions is presented to the user who can make a choice.

9.5.1.Reactions to inconsistency

1) the computer gives two contradictory solutions.

2) the computer consults the trust system for an automatic consult and accepts one solution

3) the computer consults the trust system but the trust system decides what happens

4) the computer rejects everything

5) the computer asks the user

9.5.2.Reactions to a lack of trust

1) the information from the non-trusted site is rejected

2) the user is asked

9.6.Conclusion

Inconsistencies can arise inherently as a consequence of the used logic. These kind of inconsistencies can be handled generically. When devising ontology systems inconsistencies and how to handle them should be considered. In the constructive way developed in this thesis, an inconsistency can lead to two contradictory solutions but has no further influence on the inferencing process.

Other inconsistencies can be caused by specific applications. To get a systematic view on this kind of inconsistencies more experience with applications will be necessary.

Chapter 10. Applications.

10.1. Introduction

The Semantic Web is a very new field of research. This makes it necessary to test a lot in order to avoid ending with theoretic constructions that are not usable in daily practice. This makes testcases a very important subject.

I will discuss here the most important testcases. Pieces of source code will be given in RDFProlog syntax. The full original sources are given in annexe.

10.2. Gedcom

Gedcom is a system that was developed to provide a flexible, uniform format for exchanging computerized genealogical data. The gedcom testcase of De Roo [DEROO] gives a file with rules and file with facts. A query can then be done.

This testcase is very good for testing a more complex chaining of rules; also for testing with a large set of data.

Example rule:

gc:parent(Child, Parent),gc:sex(Parent,m) :> gc:father(Child,Parent).

Two facts:

gc:parent(frank,guido),gc:sex(guido,m).

The query:

gc:father(Who,guido)

will give as solution:

gc:father(frank,guido).

10.3. The subClassOf testcase

This testcase is an example where a general rule (with a variable predicate) will cause looping if there is no anti-looping mechanism available.

It contains following fact and rule:

a(rdfs:subClassOf,owl:TransitiveProperty)

a(P,owl:TransitiveProperty),P(C1,C2),P(C2,C3) :> P(C1,C3).

Given the facts:

rdfs:subClassOf(mammalia,vertebrae).

rdfs:subClassOf(rodentia,mammalia)

and the query:

rdfs:subClassOf(What,vertebrae).

The result will be:

rdfs:subClassOf(mammalia,vertebrae).

rdfs:subClassOf(rodentia,vertebrae).

10.4. Searching paths in a graph

This testcase also needs an anti-looping mechanism. The query asks for a circular path in a graph.

It contains two rules:

P(C1,C2) :> path(C1,C2).

path(C1,C2),path(C2,C3) :> path(C1,C3).

These rules say that there is a path in the (RDF) graph if there is an arc between two nodes and that path is a transitive property.

Given the facts:

p(a,b).

p(b,c).

p(c,a).

and the query:

path(X,a)

the response will be:

path(c,a),path(b,a),path(a,a).

10.5. An Alpine club

Following example was taken from [CLUB].

Brahma, Vishnu and Siva are members of an Alpine club.

Who is a member of the club is either a skier or a climber or both.

A climber does not like the rain.

A skier likes the snow.

What Brahma likes Vishnu does not like and what Vishnu likes, Brahma does not like.

Brahma likes snow and rain.

Which member of the club is a climber and not a skier?

This case is illustrative because it shows that ‘not’ and ‘or’ can be implemented by making them properties. If this is something handy to do remains to be seen but perhaps it can be done in an automatic way. A possible way of handling this is to put all alternatives in a list.

I give the full source here as this is an important example for understanding the logic characteristics of RDF.

In RDFProlog it is not necessary to write e.g. climber(X,X); it is possible to write climber(X). However it is written as climber(X,X) to demonstrate that the same thing can be done in Notation 3 or Ntriples.

Source:

member(brahma,club).

member(vishnu,club).

member(siva,club).

member(X,club) :> or_skier_climber(X,X).

or_skier_climber(X,X),not_skier(X,X) :> climber(X,X).

or_skier_climber(X,X),not_climber(X,X) :> skier(X,X).

skier(X,X),climber(X,X) :> or_skier_climber(X,X).

skier(X,X),not_climber(X,X) :> or_skier_climber(X,X).

not_skier(X,X),climber(X,X) :> or_skier_climber(X,X).

climber(X,X) :> not_likes(X,rain).

likes(X,rain) :> no_climber(X,X).

skier(X,X) :> likes(X,snow).

not_likes(X,snow) :> no_skier(X,X).

likes(brahma,X) :> not_likes(vishnu,X).

not_likes(vishnu,X) :> likes(brahma,X).

likes(brahma,snow).

likes(brahma,rain).

Query: member(X,club),climber(X,X),no_skier(X,X).

Hereafter is the samesource but with the modifications to RDF as proposed in chapter 6:

member(brahma,club).

member(vishnu,club).

member(siva,club).

member(X,club) :> or(skier,climber)(X,X).

climber(X,X) :> not(likes(X,rain)).

skier(X,X) :> likes(X,snow).

not(likes(X,snow)) :> not(skier(X,X)).

likes(bhrama,X) :> not(likes(vishnu,X)).

not(likes(vishnu,X)) :> not(likes(brahma,X)).

likes(brahma,snow).

likes(brahma,rain).

Query: member(X,club),climber(X,X), not(skier(X,X)).

The same source but now with the use of OWL primitives.

As can be seen this is less elegant than the solution above, though it probable is acceptable. .

a(sportsman,rdfs:class).

rdfs:subclassOf(skier,sportsman).

rdfs:subclassOf(climber,sportsman).

member(X,club) :> a(X,sportsman).

a(likes-things,rdfs:class).

rdfs:subclassOf(likes-rain,likes-things).

rdfs:subclassOf(likes-snow,likes-things).

owl:disjointWith(climber,likes-rain).

a(X,skier) :> a(X,likes-snow).

a(bhrama,C),rdfs:subclassOf(C,likes-things), a(vishnu,D),rdfs:subclassOf(D,likes-things) :> owl:disjointWith(C,D).

10.6. Simulation of logic gates.

This example mainly is inserted to show that RDF can be used for other things than the World Wide Web. It shows also that backwards reasoning is not always the best solution. With backwards reasoning it has a high calculation time.
[image: image17.png]gt

att

9

ald

af3

He

a6

cin

92

af2

94

ats

L sum

o7
o,

at?

"

Fig.10.1. The simulated half-adder circuit.

To completely calculate this example I had to change manually the input values and calculate the result two times, once for the output ‘sum’ and once for the output ‘cout’. This should be automated but in order to do so a few builtins should be necessary.

The circuit represents a halfadder. This is a typical example of a problem that certainly can better be handled with forward reasoning. In backwards reasoning the inferencing starts with gate g9 or gate g7. All the possible input values of these gates must be taken into consideration. In forward reasoning the input values a and b immediately give the output of gate g1, g1 and a give the output of gate g2 and so on…

The source

Definition of a half adder. The gate schema is taken from Wos[WOS].

definition of a nand gate

The definition of a nand gate consists of 4 rules. The nand gate is indicated by a variable G. The inputs are indicated by the variables A and B. The output is indicated by the variable C. This is done with the predicates gnand1, gnand2 and gnand3. A value is assigned to the inputs using the predicates nand1 and nand2. The rule then inferes the value of the output giving the predicate nand3.

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"false"),nand2(B,"false") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"false"),nand2(B,"true") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"true"),nand2(B,"false") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"true"),nand2(B,"true") :> nand3(C,"false").

definition of the connection between gates

Two rules define the connections between the different nand gates. There is a nandnand2 connection when the output of a gate is connected with input 2 of the following gate and there is a nandnand1 connection when the output is connected with input 1.

nandnand2(G1,G2),gnand3(G1,X),gnand2(G2,X),nand3(X,V) :> nand2(X,V).

nandnand1(G1,G2),gnand3(G1,X),gnand1(G2,X),nand3(X,V) :> nand1(X,V).

An example of a connection between two gates. I this case the output of gate 1 is connected to both inputs of gate 2.

gnand1(g1,a).

gnand2(g1,b).

gnand3(g1,c).

nand1(a,"true").

nand2(b,"false").

nandnand1(g1,g2).

nandnand2(g1,g2).

gnand1(g2,c).

gnand2(g2,c).

gnand3(g2,d).

10.7. A description of owls.

This case study shows that it is possible to put data into RDF format in a systematic way. Queries can easily be done on this data. A GUI system could be put on top for entering the data and for querying in a user friendly way.

A query window can give e.g. lists of used URI’s.

10.8. A simulation of a flight reservation

I want to reserve a place in a flight going from Zaventem (Brussels) to Rio de Janeiro. The flight starts on next Tuesday (for simplicity only Tuesday is indicated as date).

Three servers are defined:

myServer contains the files: flight_rules.pro and trust.pro.

airInfo contains the file: air_info.pro.

intAir contains the file: International_air.pro.

Namespaces are given by: http://thesis/inf , abbreviated inf, the engine system space

 http://thesis:flight_rules, abbreviated frul,the flight rules.

 http://thesis/trust, abbreviated trust, the trust namespace.

 http://flight_ontology/font, abbreviated font, the flight ontology space

 http://international_air/air, abbreviated air, the namespace of the International Air company.

 http://air_info/airinfo, abbreviated ainf, the namespace of the air information service.

These are non-existent namespaces created for the purpose of this simulation..

The process goes as follows:

1) start the query. The query contains an instruction for loading the flight rules.

2) Load the flight rules (module flight_rules.pro) in G2.

3) Make the query for a flight Zaventem – Rio.

4) The flight rules will direct a query to air info. This is done using the predicate query.

5) Air info answers: yes, the company is International Air.

6) The flight rules will consult the trust rules: module trust.pro. This is done by directing a query to itself.

7) The flight rules ask whether the company International Air can be trusted.

8) The trust module answers yes, so a query is directed to International Air for commanding a ticket.

9) International Air answers with a confirmation of the reservation.

The reservation info is signalled to the user. The user is informed of the results (query + info + proof).

The content of the files can be found in annexe 3.

Chapter 11. Conclusion

11.1.Introduction

The goal of the Semantic Web is to automate processes happening on the World Wide Web that are done manually now. Seen the diversity of problems that can arise due to this goal, it is clear that very general inferencing engines will be needed. A basic engine is needed as a common platform that, however, has a very modular structure such that it can be easily extended and work together with other engines.

11.2.Characteristics of an inference engine

Taking into account the description of the goals of the Semantic Web and examples thereof [TBL,TBL01,DEROO] it is possible and necessary to deduce a list of characteristics that an inference engine for the Semantic Web should have.

1) Trust: the notion of trust has an important role in the Semantic Web. If exchanges between computers have to be done in an automatic way a computer on one site must be able to trust the computer at the other side. To determine who can be trusted and who not a policy is necessary. When the interchanges become fully automatic those policies will become complicated sets of facts and rules. Therefore the necessity for an inference engine that can make deductions from such a set. When deducing whether a certain source can be trusted or not the property of monotonicity is desirable: the decision on trustworthiness should not be changed after loading e.g. another rule set.

2) Inconsistencies and truth: if inconsistencies are encountered e.g. site A says a person is authenticated to do something and site B says this person is not, the ‘truth’ is determined by the rules of trust: site A e.g. will be trusted and site B not. So truth does not have anymore an absolute value.

 1 & 2 imply that the engine should be coupled to the trust system.

3) Reasoning in a closed world often not is possible anymore. A query ‘is x a mammal’ will have no response at if x cannot be found; the engine might find: x is a bird but can this be trusted? Prolog would suppose that all mammals are known in its database and when it does not find x to be a mammal it would say: ‘x is not a mammal’. However on the internet it is not possible to assume that ‘x is not a mammal’. The world is open and in general sets should not be considered to be complete. This might pose some problems with OWL and especially with that part of the ontology that handles sets like intersection, complement of etc.. How to find the complement of a set in an open world?

4) An open world means also heterogenous information. The engine can fetch or use facts and rules coming from anywhere. So finally it might use a database composed with data and rules from different sites that contains inconsistencies and contradictions. This poses the problem of the detection of such inconsistencies. This again is also linked to the trust system.

5) In general proving a theorem even in propositional calculus cannot be done in a fully automatic way. [Wos]. As the Semantic Web talks about automatic interchange this means that it should not be done. So the engine will be limited to querying and proof verification.

6) The existence of a Semantic Web means cooperation. Cooperation means people and their machines following the rules: the standards. The engine must work with the existing standards. There might be different standards doing the same thing. This implies the existence of conversions e.g. rule sets for the engine that convert between systems. This thesis will work with the standards XML, RDF, RDFS, OWL without therefore saying that other standards ought not to be considered. This does not imply that the author always agrees with all features of these standards but, generally, nobody will ever agree with all features of a standard. Nevertheless the standards are a necessity. Therefore the standards will be followed in this thesis. It seems however permitted to propose alternatives. For the logic of an inference engine no standards are available (or consider proposition logics and FOL as standards?). Important standardisations efforts have to be done to assure compatibility between inference engines. Anyhow, the more standards the less well the cooperation will work. Following the standard RDF has a lot of consequences: unification involves unifying sets of triples; functions are not available. The input and the output of the inference engine have to be in RDF. Also the trace must be in RDF for providing the possibility of proof verification.

7) When exchanging messages between civilians, companies, government and other parties the less point to point agreements have to be made the more easy the process will become. This implies the existence of a standard ontology (or ontologies). If agreement could be reached about some e.g. (1000 ontological concepts and their semantic effects on the level of a computer, the interchange of messages between parties on the internet could become a lot more easy. This implies that the internet inference engines will have to work with ontologies. Possibly however this ontological material can be translated to FOL terms.

8) The engine has to be extensible in an easy way: an API must exist that allows easy insertion of plugins. This API of course must be standardised.

9) The engine must have a model implementation that is open source and has a structure that is easy to understand (as far as this is possible) so that everybody can get acquainted in an easy way with the most important principles.

10) All interchanges should be fully automatic (which is why the Semantic Web is made in the first place). Human interventions should only happen when the trust policies are unable to take a decision or their rules prescribe a human intervention.

11) The engine must be able to work with namespaces so that the origin of every notion can be traced.

12) As facts and rules are downloaded from different internet sites and loaded into the engine, the possibility must exist also to unload them. So it must be possible to separate again files that have been merged. The engine should also be able to direct queries to different rule sets.

13) The engine must be very fast as very large facts and rules bases can exist e.g. when the contents of a relational database are transformed to RDF. This thesis has a few suggestions for making a fast engine . On of them implicates making a typed resolution engine; the other is item 14.

14) Concurrency: this can happen on different levels: the search for alternatives can be done concurrently over different parts of the database; the validity of several alternatives can be checked concurrently; several queries can be done concurrently i.e. the engine can duplicated in different threads.

15) Duplicating the engine in several threads also means that it must be lightweight or reentrant.

16) There should be a minimal set of builtins representing functions that are commonly found in computer languages, theorem provers and query engines like: lists, mathemathical functions, strings, arrays and hashtables.

17) Existing theorem provers can be used using an API that permits a plugin to transform the standard database structure to the internal structure of the theorem prover. However, as detailed in the following texts, this is not an evident thing to do. As a matter of fact I argue that it is better to write new engines destined specifically for use in the Semantic Web.

18) FOL technologies are a possibility: resolution can be used; also Gentzen calculus or natural deduction could be used; CWM [SWAP] uses forward reasoning. This thesis will be based on a basic resolution engine. For more information on other logic techniques see a introductory handbook on logic e.g. [BENTHEM]. Other techniques such as graph based reasoning are also possible.

11.3. An evaluation of the RDFEngine

RDFEngine, the engine made for this thesis, is an experimental engine. It does not represent all of the characteristics mentionned above.

Fig.11.1. compares RDFEngine with the list of characteristics.

11.4. Forward versus backwards reasoning

As appears from the testcases and also from the literature e.g. [ALVES] sometimes backwards reasoning is the most efficient, sometimes forward reasoning is the most efficient. In some cases like the example in chapter 10 with the electronic gates, the difference is huge. As I argued before an inference engine for the Semantic Web must be capable of solving a very large gamma of different problems.

An engine could be made that is capable of two mechanisms: forward reasoning and backwards reasoning. There are different possibilities:

1) the mechanism used is determined by an instruction in the axiom file

2) first one is used; if no positive result the other is used

3) both are used with a timeout

4) both are used concurrently

I believe a basic engine for the semantic web should be capable of using these two mechanisms. However, for one thesis, one mechanism is sufficient. The Swich software uses a graph matching algorithm that could be the basis for a third, general inferencing mechanism, as was already mentionned in chapter 7.

11.5. Final conclusions

The Semantic Web is a vast, new and highly experimental domain of research. This thesis concentrates on a particular aspect of this reasearch domain i.e. RDF and inferencing. In the layer model of the Semantic Web given in fig. 3.1. this concerns the logic, proof and trust layers with the accent on the logic layer.

In chapter 4 the goals of the thesis were exposed. I recapitulate them briefly:

1) What can be the architecture of an inference engine for the Semantic Web?

2) What system of logic is best suited for the Semantic Web?

3) What techniques can be used for optimization of the engine?

4) How must inconsistencies be handled?

1) A trust system is not implemented. Nevertheless the modularity of the implemented system permits to make a module containing trust rules. Operational aspects of trust and cryptography can be added by adding builtins to the engine. The testcase in paragraph 10…. show how this can be done. The property of monotonicity is respected by the engine.

2) All statements are marked by provenance information. Whenever an inconsistency arises it is possible to reject information having a certain origin. This can be done by using rules and unloading the statements having a certain origin.

3) The logic of RDFEngine is completely compatible with an open world as it has been shown in chapter 5 and 6.

4) RDFEngine can use information from different sites in a modular way.

5) RDFEngine can do querying and proof verification; it is not impossible do to theorem proving with it, though this is not the intention and probably will not be easy to do.

6) RDFEngine follows the standards XML, RDF, RDFS. Experiments have been done with certain OWL constructions.

7) OWL is not implemented; however it is certainly possible using the defined structures.

8) An API for RDFEngine that intercepts the matching of a clause and handles builtins or applies other inferencing to statements can easily be made.

9) RDFEngine is open source. Its workings are explained in chapter 5.

10) RDFEngine does not need human intervention; it can however be programmed.

11) RDFEngine is apt to work with namespaces.

12) RDFEngine can load and unload modules. It can also work with virtuals ervers. It can direct queries to other servers and interprete the results.

13) The engine works with a hashtable. This permits rapid retrieval of the relevant predicates for unification. The highly modular structure also permits to limit the size of the modules.

14) Concurrency is not implemented.

15) Virtual servers can easily be run in parallel via a socket system.

16) RDFEngine implements some builtins. Adding other builtins is very easy.

17) Nothing to remark.

18) The structure of RDFEngine is such that a combination of inferencing methods is possible. Different virtual servers could use different inferencing mechanisms. They communicate with each other using a standard interchange format for the results. An experiment has not been done due to a lack of time.

Fig.11.1. Comparison of RDFengine with the list of characteristics.

The accent has been on points 1 and 2. This is largely due to the fact that I encountered substantial theoretical problems when trying to find an answer for these questions. Certainly, in view of the fact that the Semantic Web must be fully automated, very clear definitions of the semantics are needed in terms of computer operations.

The investigations into logic lead to the belief that the fact that the World Wide Web is an open world is of the utmost importance. This fact has a lot of logical consequences. Unevitably, the logic of the internet must be seen in a constructive way i.e. something is only true if it can be constructed.

Generally, RDF inferencing can be approached from two angles. One approach is based on First Order Logic(FOL). FOL is, of course, a very powerfull modelling tool. Nevertheless, bacause RDF is defined as a graph model, the question arises whether this modelling using FOL is correct. In fact, all the constructive aspects of RDF are lost in a FOL model. Constructive logic is not First Order Logic.

On the other hand , a model of RDF and inferencing based purely on a graph theoretical reasoning leads to very clear definitions of rules, queries and solutions as was shown in chapter 5. With these definitions is also possible to define an interchange format between reasoning engines whathever the used reasoning method.

After numerous experiments a model of distributed inferencing was developed.

The notion of inference step is defined. An inference step is defined at the level of the unification of a statement (clause) with the RDF graph. An inference step can redirect the inferencing process to a different server. The inferencing process is under control of a main server who uses secondary servers. Sub-queries are directed to the secondary servers. The secondary servers return the results of the sub-query in a standard format. A secondary server can use other inference mechanisms than the primary server. The primary server will have the ability to acquire information about the processes used on the secondary server like authorithy information the used inferencing processes etc…

The goal is to arrive at a cooperation of inferencing mechanisms on the scale of the World Wide Web.

An extensive example of such a cooperative query is provided.

Each server can make use of different RDF graphs. As servers can be virtual this creates a double modular structure: low level modules are constituted by RDF graphs and high level modules are constituted by virtual servers who communicate between them using sockets. Different virtual servers can use different inference mechanisms.

In chapter 6 a further reseach into the logic properties of RDF and the proposed inferencing model is done with the renewed conclusion that a kind of constructive logic is what is needed for the Semantic Web.

An executable engine has been built in Haskell. The characteristics of Haskell force the programmer to execute a separation of concerns. The higher order functions permit to write very compact code. The following programming model was used:

1) define an abstract syntax corresponding to different concrete syntaxes like RDFProlog and Notation 3.

2) Encapsulate the data structures into an Abstract Data Type (ADT).

3) Define an interface language for the ADT’s, also called mini-languages.

4) Program the main functional parts of the program using these mini-languages.

This programming model leads to very portable, maintainable and data independent program structures.

Suggestions can be made for further research:

· RDFEngine can be used as a simulation tool for investigating the characteristics of distributed inferencing for several different vertical application models. Examples are: placing a command, making an appointment with a dentist, searching a book, etc…

· The integration with trust systems and cryptographic methods needs further study.

· An interesting possibility is the build of inference engines that use both forward en backwards reasoning or a mix of both.

· Complementary to the previous point, the feasability of an inference engine based on subgraph matching technologies using the algorithm of Carroll is worth investigating.

· The applicability of methods for enhancing the efficiency of forwards reasoning in an RDF engine should be studied. It is especially worth studying whether RDF permits special optimization techniques.

· This is the same as previous item but for backwards reasoning.

· The interaction between different inference engines can be further studied.

· OWL (Lite) can be implemented and the modalities of different implementations and ways of implementation can be studied.

· Which user interfaces are needed? What about messages to the user?

· A study can be made what information is interesting to provide concerning the inference clients, engines, servers and other entities.

· A very interesting and, in my opinion, necessary field of research is how Semantic Web engines will have learning capabilities. A main motivation for this is the avoidance of repetitive queries with the same result. Possibly also, clients can learn from the human user in case of conflict.

· Adding to the previous point, the study of conflict resolving mechanisms is interesting. Inspiration can be sought with the SOAR project.

I believe RDFEngine can be a starting point for a ‘reference’ implementation of a Semantic Web engine. It can also be a starting point for further investigations. I hope that this thesis has given a small but significant contribution to the development of the Semantic Web.

Bibliography

[AIT] Hassan Aït-Kaci WAM A tutorial reconstruction .

[ADDRESSING] http://www.w3.org/Adressing/ .

[ALBANY] http://www.albany.edu/~gilmr/metadata/rdf.ppt

[ALVES] Alves, Datalog,programmation logique et négation,Université de tours.

[BERNERS] Semantic Web Tutorial Using N3,Berners-Lee e.a., May 20,2003, http://www.w3.org/2000/10/swap/doc/
[BOLLEN] Bollen e.a., The World-Wide Web as a Super-Brain: from metaphor to model, http://pespmc1.vub.ac.be/papers/WWWSuperBRAIN.html
[BOTHNER] Per Bothner, What is Xquery?, http://www.xml.com/lpt/a/2002/10/16/xquery.html

[BUNDY] Alan Bundy , Artificial Mathematicians, May 23, 1996, http://www.dai.ed.ac.uk/homes/bundy/tmp/new-scientist.ps.gz

[CARROLL] Carroll,J., Matching RDF Graphs, July 2001.

[CASTELLO] R.Castello e.a. Theorem provers survey. University of Texas at Dallas. http://citeseer.nj.nec.com/409959.html

[CENG] André Schoorl, Ceng 420 Artificial intelligence University of Victoria, http://www.engr.uvic.ca/~aschoorl/ceng420/
[CHAMPIN] Pierre Antoine Champin, 2001 – 04 –05, http://www710.univ-lyon1.fr/~champin/rdf-tutorial/node12.html
[CLUB] http://www.cirl.uoregon.edu/~iustin/cis571/unit3.html, University of Oregon
[COQ] Huet e.a. RT-0204-The Coq Proof Assistant : A Tutorial, http://www.inria.fr/rrt/rt-0204.html.

[CS] http://www.cs.ucc.ie/~dgb/courses/pil/ws11.ps.gz
[DAML+OIL] DAML+OIL (March 2001) Reference Description. Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. W3C Note 18 December 2001. Latest version is available at http://www.w3.org/TR/daml+oil-reference.

[DECKER] Decker e.a., A query and Inference Service for RDF,University of KarlsRuhe.

[DENNIS] Louise Dennis Midlands Graduate School in TCS, http://www.cs.nott.ac.uk/~lad/MR/lcf-handout.pdf
[DESIGN] http://www.w3.org/DesignIssues/ * Tim Berners-Lee’s site with his design-issues articles .

[DEROO] http://www.agfa.com/w3c/jdroo * the site of the Euler program

[DICK] A.J.J.Dick, Automated equational reasoning and the knuth-bendix algorithm: an informal introduction, Rutherford Appleton Laboratory Chilton, Didcot OXON OX11 OQ, http://www.site.uottawa.ca/~luigi/csi5109/church-rosser.doc/

[DONALD] http://dream.dai.ed.ac.uk/papers/donald/subsectionstar4_7.html
[EDMONDS] Edmonds Bruce, What if all truth is context-dependent?, Manchester Metropolitan University, http://www.cpm.mmu.ac.uk/~bruce.

[GANDALF] http://www.cs.chalmers.se/~tammet/gandalf * Gandalf Home Page
[GENESERETH] Michael Genesereth, Course Computational logic, Computer Science Department, Stanford University.

[GHEZZI] Ghezzi e.a. Fundamentals of Software Engineering Prentice-Hall 1991 .

[GRAPH] http://www.agfa.com/w3c/euler/graph.axiom.n3
[GROSOF]Benjamin Grosof, Introduction to RuleML, http://ebusiness.mit.edu/bgrosof/paps/talk-ruleml-jc-ovw-102902-main.pdf

[GUPTA] Amit Gupta & Ashutosh Agte, Untyped lambda calculus, alpha-, beta- and eta- reductions, April 28/May 1 2000, http://www/cis/ksu.edu/~stefan/Teaching/CIS705/Reports/GuptaAgte-2.pdf
[HARRISON] J.Harrison, Introduction to functional programming, 1997.

[HAWKE] http://lists.w3.org/Archives/Public/www-rdf-rules/2001Sep/0029.html
[HEFLIN] J.D.Heflin, Towards the semantic web: knowledge representation in a dynamic,distributed environment, Dissertation 2001.

[HILOG] http://www.cs.sunysb.edu/~warren/xsbbook/node45.html
[JEURING] J.Jeuring and D.Swierstra, Grammars and parsing, http://www.cs.uu.nl/docs/vakken/gont/
[JEURING1] Jeuring e.a. ,Polytypic unification, J.Functional programming, september 1998.

[KERBER] Manfred Kerber, Mechanised Reasoning, Midlands Graduate School in Theoretical Computer Science, The University of Birmingham, November/December 1999, http://www.cs.bham.ac.uk/~mmk/courses/MGS/index.html
[KLYNE]G.Klyne, Nine by nine:Semantic Web Inference using Haskell, May, 2003, http://www/ninebynine.org/Software/swish-0.1.html
[KLYNE2002] G.Klyne,Circumstance, provenance and partial knowledge, http://www.ninebyne.org/RDFNotes/UsingContextsWithRDF.html

[LAMBDA] http://www.cse.psu.edu/~dale/lProlog/ * lambda prolog home page

[LEHMAN] Lehman e.a., A gentle Introduction to Soar, an Architecture for Human Cognition.

[LINDHOLM] Lindholm, Exercise Assignment Theorem prover for propositional modal logics, http://www.cs.hut.fi/~ctl/promod.ps
[LOGPRINC] http://www.earlham.edu/~peters/courses/logsys/glossary.html
[MCGUINESS] Deborah McGuiness Explaining reasoning in description logics 1966 Ph.D.Thesis

[MCGUINESS2003] McGuiness e.a., Inference Web:Portable explanations for the web,Knowledge Systems Laboratory, Stanford University.

[MYERS] CS611 LECTURE 14 The Curry-Howard Isomorphism, Andrew Myers.

[NADA] Arthur Ehrencrona, Royal Institute of Technology Stockholm, Sweden, http://cgi.student.nada.kth.se/cgi-bin/d95-aeh/get/umeng
[OTTER] http://www.mcs.anl.gov/AR/otter/ Otter Home Page

[OWL Features] Feature Synopsis for OWL Lite and OWL. Deborah L. McGuinness and Frank van Harmelen. W3C Working Draft 29 July 2002. Latest version is available at http://www.w3.org/TR/owl-features/.

[OWL Issues] Web Ontology Issue Status. Michael K. Smith, ed. 10 Jul 2002.

[OWL Reference] OWL Web Ontology Language 1.0 Reference. Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. W3C Working Draft 29 July 2002. Latest version is available at http://www.w3.org/TR/owl-ref/.

[OWL Rules] http://www.agfa.com/w3c/euler/owl-rules

[PFENNING_1999] Pfenning e.a., Twelf a Meta-Logical framework for deductive Systems, Department of Computer Science, Carnegie Mellon University, 1999.

[PFENNING_LF] http://www-2.cs.cmu.edu/afs/cs/user/fp/www/lfs.html
[POPPER]Bryan Magee, Popper, Het Spectrum, 1974.

[RDFM]RDF Model Theory .Editor: Patrick Hayes

 http://www.w3.org/TR/rdf-mt/

[RDFMS] Resource Description Framework (RDF) Model and Syntax Specification http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
[RDF Primer] http://www.w3.org/TR/rdf-primer/
[RDFRULES] http://lists.w3.org/Archives/Public/www-rdf-rules/
[RDFSC] Resource Description Framework (RDF) Schema Specification 1.0 http://www.w3.org/TR/2000/CR-rdf-schema-20000327

[RQL] Sesame RQL :a Tutorial,J.Broekstra, http://sesame.aidministrator.nl/publications/rql-tutorial.html
[SABIN] Miles Sabin, http://lists.w3.org/Archives/Public/www-rdf-logic/2001Apr/0074.html
[SCHNEIER] Schneier Bruce, Applied Cryptography

[SINTEK] Sintek e.a.,TRIPLE – A query, Inference, and Transformation Language for the Semantic Web, Stanford University.)

[STANFORD] Portoraro, Frederic, "Automated Reasoning", The Stanford Encyclopedia of Philosophy (Fall 2001 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/fall2001/entries/reasoning-automated/.
[STANFORDP] Priest, Graham, Tanaka, Koji, "Paraconsistent Logic", The Stanford Encyclopedia of Philosophy (Winter 2000 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/win2000/entries/logic-paraconsistent/.

[SWAP/CWM] http://www.w3.org/2000/10/swap http://infomesh.net/2001/cwm CWM is another inference engine for the web .

[SWAPLOG] http://www/w3.org/200/10/swap/log#
[TBL] Tim-berners Lee, Weaving the web,
[TBL01] Berners-Lee e.a.The semantic web Scientific American May 2001

 [TWELF] http://www.cs.cmu.edu/~twelf* Twelf Home Page

[UNCERT] Hin-Kwong Ng e.a. Modelling uncertainties in argumentation, Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong http://www.se.cuhk.edu.hk/~hkng/papers/uai98/uai98.html
[UNICODE] http://www.unicode.org/unicode/standard/principles.html
[UMBC] TimothyW.Finin, Computer Science and Electrical Engineering, University of Maryland Baltimore Country, http://www.cs.umbc.edu/471/lectures/9/sld040.htm
[URI] http://www.isi.edu/in-notes/rfc2396.txt
[USHOLD] Michael Ushold The boeing company, Where is the semantics of the web?http://cis.otago.ac.nz/OASWorkschop/Papers/WhereIsTheSemantics.pdf

[VAN BENTHEM] Van Benthem e.a., Logica voor informatici, Addison Wesley 1991.

[WALSH] Toby Walsh, A divergence critic for inductive proof, 1/96, Journal of Artificial Intelligence Research, http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/walsh96a-html/section3_3.html
[WESTER] Wester e.a. Concepten van programmeertalen,Open Universiteit Eerste druk 1994 Important for a thorough introduction in Gofer . In Dutch .

[WOS] Wos e.a. Automated reasoning,Prentice Hall, 1984

[W3SCHOOLS http://www.w3schools.com/w3c/w3c_intro.asp
[YUREK] Yurek , Datalog bottom-up is the trend in the deductive database evaluation strategy, University of Maryland, 2002.

List of abbreviations

ALF

: Algebraic Logic Functional Programming Language

API

: Application Programming Interface

CA

: Certification Authority

CWM

: Closed World Machine

 An experimental inference engine for the semantic web

DTD

: Document Type Definition , a language for defining XML-

 objects .

HTML
: Hypertext Markup Language

KB

: Knowledge Base

FOL

: First Order Logic

N3

: Notation 3

OWL

: Ontology Web Language

PKI

: Public Key Infrastructure

RA

: Registration Authority

RDF

: Resource Description Framework

RDFS

: RDF Schema

SGML
: Standard General Markup Language

SweLL
: Semantic Web Logic Language

URI

: Uniform Resource Indicator

URL

: Uniform Resource Locator

W3C

: World Wide Web Consortium

WAM
: Warren Abstract Machine

 Probably the first efficient implementation of prolog .

XML

: Extensible Markup Language .

 The difference with HTML is that tags can be freely defined in

 XML .

Annexe 1: Excuting the engine

There are actually two versions of the engine. One, N3Engine has been tested with a lot of usecases buthas a rather conventional structure. The other, RDFEngine, is less tested but has a structure that is more directed towards the Semantic Web. It is the version RDFEngine that has been exposed in the text and of which the source code is added at the end.
Usage of the inference engine N3Engine.

First unzip the file EngZip.zip into a directory.

Following steps construct a demo (with the Hugs distribution under Windows):

1) winhugs.exe

2) :l RDFProlog.hs

3) menu

4) choose one of the examples e.g. en2. These are testcases with the source in Notation 3

5) menuR

6) choose one of the examples e.g. pr12. Those with number 1 at the end give the translation from RDFProlog to Notation3; those with number 2 at the end execute the program.

Usage of the inference engine RDFEngine.

First unzip the file RDFZip.zip into a directory.

Following steps construct a demo (with the Hugs distribution under Windows):

7) winhugs.exe

8) :l RDFEngine.hs

9) pro11

10) repeat the s(tep) instruction

or after loading:

 9) start

 10) menu

 11) choose an item

 12) enter e

Annexe 2. Example of a closure path.

 An example of a resolution and a closure path made with the gedcom example (files gedcom.facts.n3, gedcom.relations.n3, gedcom.query.n3)

First the trace is given with the global substitutions and all calls and alternatives:

Substitutions:

{2$_$17_:child = :Frank. _1?who1 = 2$_$17_:grandparent. 3$_$16_:child = :Frank. 2$_$17_:grandparent = 3$_$16_:grandparent. 4$_$13_:child = :Frank. 3$_$16_:parent = 4$_$13_:parent. 4$_$13_:family = :Naudts_VanNoten. 4$_$13_:parent = :Guido. 7$_$13_:child = :Guido. 3$_$16_:grandparent = 7$_$13_:parent. 7$_$13_:family = :Naudts_Huybrechs. 7$_$13_:parent = :Pol. }.

N3Trace:

[:call {:Frank gc:grandfather _1?who1. }].

:alternatives = {{2$_$17_:child gc:grandparent 2$_$17_:grandparent. 2$_$17_:grandparent gc:sex :M. }

}

[:call {:Frank gc:grandparent 2$_$17_:grandparent. }].

:alternatives = {{3$_$16_:child gc:parent 3$_$16_:parent. 3$_$16_:parent gc:parent 3$_$16_:grandparent. }

}

[:call {:Frank gc:parent 3$_$16_:parent. }].

:alternatives = {{4$_$13_:child gc:childIn 4$_$13_:family. 4$_$13_:parent gc:spouseIn 4$_$13_:family. }

}

[:call {:Frank gc:childIn 4$_$13_:family. }].

:alternatives = {{:Frank gc:childIn :Naudts_VanNoten. }

}

[:call {4$_$13_:parent gc:spouseIn :Naudts_VanNoten. }].

:alternatives = {{:Guido gc:spouseIn :Naudts_VanNoten. }

{:Christine gc:spouseIn :Naudts_VanNoten. }

}

[:call {:Guido gc:parent 3$_$16_:grandparent. }].

:alternatives = {{7$_$13_:child gc:childIn 7$_$13_:family. 7$_$13_:parent gc:spouseIn 7$_$13_:family. }

}

[:call {:Guido gc:childIn 7$_$13_:family. }].

:alternatives = {{:Guido gc:childIn :Naudts_Huybrechs. }

}

[:call {7$_$13_:parent gc:spouseIn :Naudts_Huybrechs. }].

:alternatives = {{:Martha gc:spouseIn :Naudts_Huybrechs. }

{:Pol gc:spouseIn :Naudts_Huybrechs. }

}

[:call {:Pol gc:sex :M. }].

:alternatives = {{:Pol gc:sex :M. }

}

Query:

{:Frank gc:grandfather _1?who1. }

Solution:

{:Frank gc:grandfather :Pol. }

The calls and alternatives with the global substitution applied:

--

It can be immediately verified that the resolution path is complete.

(The alternatives that lead to failure are deleted).

[:call {:Frank gc:grandfather :Pol.}].

:alternatives = {{:Frank gc:grandparent :Pol. :Pol gc:sex :M. }

}

[:call {:Frank gc:grandparent :Pol. }].

:alternatives = {{:Frank gc:parent :Guido. :Guido gc:parent :Pol. }

}

[:call {:Frank gc:parent :Guido. }].

:alternatives = {{:Frank gc:childIn :Naudts_Vannoten. :Guido gc:spouseIn :Naudts_Vannoten. }

}

[:call {:Frank gc:childIn :Naudts_Vannoten. }].

:alternatives = {{:Frank gc:childIn :Naudts_VanNoten. }

}

[:call {:Guido gc:spouseIn :Naudts_VanNoten. }].

:alternatives = {{:Guido gc:spouseIn :Naudts_VanNoten. }

}

[:call {:Guido gc:parent :Pol. }].

:alternatives = {{:Guido gc:childIn :Naudts_Huybrechs. :Pol gc:spouseIn :Naudts_Huybrechs. }

}

[:call {:Guido gc:childIn :Naudts_Huybrechs. }].

:alternatives = {{:Guido gc:childIn :Naudts_Huybrechs. }

}

[:call {:Pol gc:spouseIn :Naudts_Huybrechs. }].

:alternatives = {{:Pol gc:spouseIn :Naudts_Huybrechs. }

}

[:call {:Pol gc:sex :M. }].

:alternatives = {{:Pol gc:sex :M. }

}

Query:

{:Frank gc:grandfather _1?who1. }

Solution:

{:Frank gc:grandfather :Pol. }

It is now possible to establish the closure path.

({{:Guido gc:childIn :Naudts_Huybrechs. :Pol gc:spouseIn :Naudts_Huybrechs. }, {:Guido gc:parent :Pol. })

({{:Frank gc:childIn :Naudts_Vannoten. :Guido gc:spouseIn :Naudts_Vannoten. }, {:Frank gc:parent :Guido. })

({{:Frank gc:parent :Guido. :Guido gc:parent :Pol. },

{:Frank gc:grandparent :Pol. })

({{:Frank gc:grandparent :Pol. :Pol gc:sex :M. },

{:Frank gc:grandfather :Pol.})

The triples that were added during the closure are:

{:Guido gc:parent :Pol. }

{:Frank gc:parent :Guido. }

{:Frank gc:grandparent :Pol. }

{:Frank gc:grandfather :Pol.}

It is verified that the reverse of the resolution path is indeed a closure path.

Verification of the lemmas

Closure Lemma: certainly valid for this closure path.

Query Lemma: the last triple in the closure path is the query.

Final Path Lemma: correct for this resolution path.

Looping Lemma: not applicable

Duplication Lemma: not applicable.

Failure Lemma: not contradicted.

Solution Lemma I: correct for this testcase.

Solution Lemma II: correct for this testcase.

Solution Lemma III: not contradicted.

Completeness Lemma: not contradicted.

Annexe 3. Test cases

Gedcom

The file with the relations (rules):

$Id: gedcom-relations.n3,v 1.3 2001/11/26 08:42:34 amdus Exp $

Original http://www.daml.org/2001/01/gedcom/gedcom-relations.xml by Mike Dean (BBN Technologies / Verizon)

Rewritten in N3 (Jos De Roo AGFA)

state that the rules are true (made by Tim Berners-Lee W3C)

see also http://www.w3.org/2000/10/swap/Examples.html

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

@prefix ont: <http://www.daml.org/2001/03/daml+oil#> .

@prefix gc: <http://www.daml.org/2001/01/gedcom/gedcom#> .

@prefix : <gedcom#> .

{{:child gc:childIn :family. :parent gc:spouseIn :family} log:implies {:child gc:parent :parent}} a log:Truth; log:forAll :child, :family, :parent.

{{:child gc:parent :parent. :parent gc:sex :M} log:implies {:child gc:father :parent}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent. :parent gc:sex :F} log:implies {:child gc:mother :parent}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent} log:implies {:parent gc:child :child}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent. :child gc:sex :M} log:implies {:parent gc:son :child}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent. :child gc:sex :F} log:implies {:parent gc:daughter :child}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent. :parent gc:parent :grandparent} log:implies {:child gc:grandparent :grandparent}} a log:Truth; log:forAll :child, :parent, :grandparent.

{{:child gc:grandparent :grandparent. :grandparent gc:sex :M} log:implies {:child gc:grandfather :grandparent}} a log:Truth; log:forAll :child, :parent, :grandparent.

{{:child gc:grandparent :grandparent. :grandparent gc:sex :F} log:implies {:child gc:grandmother :grandparent}} a log:Truth; log:forAll :child, :parent, :grandparent.

{{:child gc:grandparent :grandparent} log:implies {:grandparent gc:grandchild :child}} a log:Truth; log:forAll :child, :grandparent.

{{:child gc:grandparent :grandparent. :child gc:sex :M} log:implies {:grandparent gc:grandson :child}} a log:Truth; log:forAll :child, :grandparent.

{{:child gc:grandparent :grandparent. :child gc:sex :F} log:implies {:grandparent gc:granddaughter :child}} a log:Truth; log:forAll :child, :grandparent.

{{:child1 gc:childIn :family. :child2 gc:childIn :family. :child1 ont:differentIndividualFrom :child2} log:implies {:child1 gc:sibling :child2}} a log:Truth; log:forAll :child1, :child2, :family.

{{:child2 gc:sibling :child1} log:implies {:child1 gc:sibling :child2}} a log:Truth; log:forAll :child1, :child2.

{{:child gc:sibling :sibling. :sibling gc:sex :M} log:implies {:child gc:brother :sibling}} a log:Truth; log:forAll :child, :sibling.

{{:child gc:sibling :sibling. :sibling gc:sex :F} log:implies {:child gc:sister :sibling}} a log:Truth; log:forAll :child, :sibling.

{?a gc:sex :F. ?b gc:sex :M.} log:implies {?a ont:differentIndividualFrom ?b.}.

{?b gc:sex :F. ?a gc:sex :M.} log:implies {?a ont:differentIndividualFrom ?b.}.

{{:spouse1 gc:spouseIn :family. :spouse2 gc:spouseIn :family. :spouse1 ont:differentIndividualFrom :spouse2} log:implies {:spouse1 gc:spouse :spouse2}} a log:Truth; log:forAll :spouse1, :spouse2, :family.

{{:spouse2 gc:spouse :spouse1} log:implies {:spouse1 gc:spouse :spouse2}} a log:Truth; log:forAll :spouse1, :spouse2.

{{:spouse gc:spouse :husband. :husband gc:sex :M} log:implies {:spouse gc:husband :husband}} a log:Truth; log:forAll :spouse, :husband.

{{:spouse gc:spouse :wife. :wife gc:sex :F} log:implies {:spouse gc:wife :wife}} a log:Truth; log:forAll :spouse, :wife.

{{:child gc:parent :parent. :parent gc:brother :uncle} log:implies {:child gc:uncle :uncle}} a log:Truth; log:forAll :child, :uncle, :parent.

{{:child gc:aunt :aunt. :aunt gc:spouse :uncle} log:implies {:child gc:uncle :uncle}} a log:Truth; log:forAll :child, :uncle, :aunt.

{{:child gc:parent :parent. :parent gc:sister :aunt} log:implies {:child gc:aunt :aunt}} a log:Truth; log:forAll :child, :aunt, :parent.

{{:child gc:uncle :uncle. :uncle gc:spouse :aunt} log:implies {:child gc:aunt :aunt}} a log:Truth; log:forAll :child, :uncle, :aunt.

{{:parent gc:daughter :child. :parent gc:sibling :sibling} log:implies {:sibling gc:niece :child}} a log:Truth; log:forAll :sibling, :child, :parent.

{{:parent gc:son :child. :parent gc:sibling :sibling} log:implies {:sibling gc:nephew :child}} a log:Truth; log:forAll :sibling, :child, :parent.

{{:cousin1 gc:parent :sibling1. :cousin2 gc:parent :sibling2. :sibling1 gc:sibling :sibling2} log:implies {:cousin1 gc:firstCousin :cousin2}} a log:Truth; log:forAll :cousin1, :cousin2, :sibling1, :sibling2.

{{:child gc:parent :parent} log:implies {:child gc:ancestor :parent}} a log:Truth; log:forAll :child, :parent.

{{:child gc:parent :parent. :parent gc:ancestor :ancestor} log:implies {:child gc:ancestor :ancestor}} a log:Truth; log:forAll :child, :parent, :ancestor.

{{:child gc:ancestor :ancestor} log:implies {:ancestor gc:descendent :child}} a log:Truth; log:forAll :child, :ancestor.

{{:sibling1 gc:sibling :sibling2. :sibling1 gc:descendent :descendent1. :sibling2 gc:descendent :descendent2} log:implies {:descendent1 gc:cousin :descendent2}} a log:Truth; log:forAll :descendent1, :descendent2, :sibling1, :sibling2.

The file with the facts:

$Id: gedcom-facts.n3,v 1.3 2001/11/26 08:42:33 amdus Exp $

@prefix gc: <http://www.daml.org/2001/01/gedcom/gedcom#>.

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix : <gedcom#>.

:Goedele gc:childIn :dt; gc:sex :F.

:Veerle gc:childIn :dt; gc:sex :F.

:Nele gc:childIn :dt; gc:sex :F.

:Karel gc:childIn :dt; gc:sex :M.

:Maaike gc:spouseIn :dt; gc:sex :F.

:Jos gc:spouseIn :dt; gc:sex :M.

:Jos gc:childIn :dp; gc:sex :M.

:Rita gc:childIn :dp; gc:sex :F.

:Geert gc:childIn :dp; gc:sex :M.

:Caroline gc:childIn :dp; gc:sex :F.

:Dirk gc:childIn :dp; gc:sex :M.

:Greta gc:childIn :dp; gc:sex :F.

:Maria gc:spouseIn :dp; gc:sex :F.

:Frans gc:spouseIn :dp; gc:sex :M.

:Ann gc:childIn :gd; gc:sex :F.

:Bart gc:childIn :gd; gc:sex :M.

:Rita gc:spouseIn :gd; gc:sex :F.

:Paul gc:spouseIn :gd; gc:sex :M.

:Ann_Sophie gc:childIn :dv; gc:sex :F.

:Valerie gc:childIn :dv; gc:sex :F.

:Stephanie gc:childIn :dv; gc:sex :F.

:Louise gc:childIn :dv; gc:sex :F.

:Christine gc:spouseIn :dv; gc:sex :F.

:Geert gc:spouseIn :dv; gc:sex :M.

:Bieke gc:childIn :cd; gc:sex :F.

:Tineke gc:childIn :cd; gc:sex :F.

:Caroline gc:spouseIn :cd; gc:sex :F.

:Hendrik gc:spouseIn :cd; gc:sex :M.

:Frederik gc:childIn :dc; gc:sex :M.

:Stefanie gc:childIn :dc; gc:sex :F.

:Stijn gc:childIn :dc; gc:sex :M.

:Karolien gc:spouseIn :dc; gc:sex :F.

:Dirk gc:spouseIn :dc; gc:sex :M.

:Lien gc:childIn :sd; gc:sex :F.

:Tom gc:childIn :sd; gc:sex :M.

:Greta gc:spouseIn :sd; gc:sex :F.

:Marc gc:spouseIn :sd; gc:sex :M.

The queries:

$Id: gedcom-query.n3,v 1.5 2001/12/01 01:21:27 amdus Exp $

PxButton | test | jview Euler gedcom-relations.n3 gedcom-facts.n3 gedcom-query.n3 |

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix gc: <http://www.daml.org/2001/01/gedcom/gedcom#>.

@prefix : <gedcom#>.

_:x gc:parent :Maaike, :Jos. # ok

:Maaike gc:son _:x. # ok

:Jos gc:daughter _:x. # ok

_:x gc:grandfather :Frans. # ok

:Maria gc:grandson _:x. # ok

 :Frans gc:granddaughter _:x. # ok

:Nele gc:sibling _:x. # ok

_:x gc:brother :Geert. # ok

_:x gc:spouse :Frans. # ok

_:x gc:husband _:y. # ok

:Karel gc:aunt _:x. # ok

:Nele gc:aunt _:x. # ok

:Rita gc:niece _:x.

:Nele gc:firstCousin _:x.

:Karel gc:ancestor _:x. # ok

:Maria gc:descendent _:x. # ok

:Karel gc:cousin _:x. # ok

Ontology

The axiom file:

File ontology1.axiom.n3

definition of rdfs ontology

modelled after: A Logical Interpretation of RDF

Wolfram Conen, Reinhold Klapsing, XONAR IT and Information Systems

and Software Techniques Velbert, Germany U Essen, D-45117

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix ont: <http://www.w3.org/2002/07/daml+oil#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <ontology#>.

:mammalia rdfs:subClassOf :vertebrae.

:rodentia rdfs:subClassOf :mammalia.

:muis rdfs:subClassOf :rodentia.

:spitsmuis rdfs:subClassOf :muis.

rdfs:subClassOf a owl:TransitiveProperty.

 {{:p a owl:TransitiveProperty. :c1 :p :c2. :c2 :p :c3} log:implies {:c1

 :p :c3}} a log:Truth;log:forAll :c1, :c2, :c3, :p.

The query:

File ontology1.query.n3

rdfs ontology.

@prefix ont: <http://www.w3.org/2002/07/daml+oil#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <ontology#>.

?who rdfs:subClassOf :vertebrae.

:spitsmuis rdfs:subClassOf ?who.

?w1 rdfs:subClassOf ?w2.

Paths in a graph

The axiom file:

File path.axiom.n3

definition of rdfs ontology

modelled after: A Logical Interpretation of RDF

Wolfram Conen, Reinhold Klapsing, XONAR IT and Information Systems

and Software Techniques Velbert, Germany U Essen, D-45117

@prefix rdfs: <http://test#>.

@prefix : <ontology#>.

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

:m :n :o.

:a :b :c.

:c :d :e.

:e :f :g.

:g :h :i.

:i :j :k.

:k :l :m.

:o :p :q.

:q :r :s.

:s :t :u.

:u :v :w.

:w :x :z.

:z :f :a.

{?c1 ?p ?c2.} log:implies {?c1 :path ?c2.}.

{?c2 :path ?c3.?c1 :path ?c2.} log:implies {?c1 :path ?c3.}.

The query:

File path.query.n3

rdfs ontology.

@prefix rdfs: <http://test#>.

@prefix : <ontology#>.

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

#:a :path :a.

#?w :path :z.

?x :path ?y.

Logic gates

The axiom file:

definition of a half adder (from Wos Automated reasoning)

definition of a nand gate

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"false"),nand2(B,"false") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"false"),nand2(B,"true") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"true"),nand2(B,"false") :> nand3(C,"true").

gnand1(G,A),gnand2(G,B),gnand3(G,C),nand1(A,"true"),nand2(B,"true") :> nand3(C,"false").

definition of the connection between gates

nandnand2(G1,G2),gnand3(G1,X),gnand2(G2,X),nand3(X,V) :> nand2(X,V).

nandnand1(G1,G2),gnand3(G1,X),gnand1(G2,X),nand3(X,V) :> nand1(X,V).

The facts of the example:

gnand1(g1,a).

gnand2(g1,b).

gnand3(g1,a11).

nand1(a,"true").

nand2(b,"true").

nandnand1(g1,g3).

nandnand2(g1,g2).

nandnand2(g1,g9).

gnand1(g2,a).

gnand2(g2,a11).

gnand3(g2,a12).

nandnand1(g2,g4).

gnand1(g3,a11).

gnand2(g3,b).

gnand3(g3,a13).

nandnand2(g3,g4).

gnand1(g4,a12).

gnand2(g4,a13).

gnand3(g4,a14).

nandnand1(g4,g6).

nandnand1(g4,g5).

gnand1(g5,a14).

gnand2(g5,cin).

gnand3(g5,a15).

nand2(cin,"true").

nandnand1(g5,g8).

nandnand1(g5,g9).

nandnand2(g5,g6).

gnand1(g6,a14).

gnand2(g6,a15).

gnand3(g6,a16).

nandnand1(g6,g7).

gnand1(g7,a16).

gnand2(g7,a17).

gnand3(g7,sum).

gnand1(g8,a15).

gnand2(g8,cin).

gnand3(g8,a17).

nandnand2(g8,g7).

gnand1(g9,a15).

gnand2(g9,a11).

gnand3(g9,cout).

The queries:

nand3(sum,V).

nand3(cout,V).

Simulation of a flight reservation

I want to reserve a place in a flight going from Zaventem (Brussels) to Rio de Janeiro. The flight starts on next Tuesday (for simplicity only Tuesday is indicated as date). The respective RDF graphs are indicated G1, G2, etc… G1 is the system graph.

Namespaces are given by: http://thesis/inf , abbreviated inf, the engine system space

 http://thesis:flight_rules, abbreviated frul,the flight rules.

 http://thesis/trust, abbreviated trust, the trust namespace.

 http://flight_ontology/font, abbreviated font, the flight ontology space

 http://international_air/air, abbreviated air, the namespace of the International Air company.

 http://air_info/airinfo, abbreviated ainf, the namespace of the air information service.

These are non-existent namespaces created for the purpose of this simulation..

The process goes as follows:

10) start the query. The query contains an instruction for loading the flight rules.

11) Load the flight rules (module flight_rules.pro) in G2.

12) Make the query for a flight Zaventem – Rio.

13) The flight rules will direct a query to air info. This is simulated by loading the module air_info.pro in G3.

14) Air info answers yes, the company is International Air. The module air_info is deloaded from G3..

15) The flight rules will load the trust rules in G3: module trust.pro.

16) The flight rules ask whether the company International Air can be trusted.

17) The trust module answers yes, so a query is directed to International Air for commanding a ticket. This is simulated by loading the module International_air.pro in G4

18) International Air answers with a confirmation of the reservation.

The reservation info is signalled to the user. The user is informed of the results (query + info + proof).

The query

prefix(inf, http://thesis/inf/).

prefix(font, http://flight_ontology/).

prefix(frul, http://thesis:flight_rules/).

inf:load(frul:flight_rules.pro).

font:reservation(R1).

R1(font:start,”Zaventem”,”Tuesday”).

R1(font:back, ”Zaventem”,”Thursday”).

R1(font:destination,”Rio”).

R1(font:price,inf:lower, ”3000”).

inf:deload(frul:flight_rules.pro).

The flight rules

prefix(inf, http://thesis/inf).

prefix(font, http://flight_ontology/font).

prefix(trust, http://thesis/trust).

prefix(ainf, http://air_info/airinfo).

inf:query(ainf:flight_info.pro),

X(font:start,Place,Day),

X(font:destination,Place1),

X(font:price,inf:lower,P),

font:flight(Y,X),

inf:end_query(ainf:flight_info.pro),

trust:trust(Y) ,
inf:query(Y),

font:ticket(X,I),

inf:end_query(Y),

inf:print(I),

inf:end_query(Y)

:> font:reservation(X).

flight_info.pro

prefix(inf, http://thesis/inf/).

prefix(font, http://flight_ontology/font/).

prefix(iair, http://international_air/air/).

font.flight(“intAir”,F716).

F716(font:flight_number,”F716”).

F716(font:destination,”Rio”).

F716(font:price,inf:lower, ”2000”).

Trust.pro

prefix(trust, http://thesis/trust).

trust:trust(“intAir”

Annexe 4. Theorem provers an overview

1.Introduction

As this thesis is about automatic deduction using RDF declarations and rules, it is useful to give an overview of the systems of automated reasoning that exist. In this connection the terms machinal reasoning and, in a more restricted sense, theorem provers, are also relevant.

First there follows an overview of the varying (logical) theoretical basises and the implementation algorithms build upon them. In the second place an overview is given of practical implementations of the algoritms. This is by no means meant to be exhaustive.

Kinds of theorem provers :

 [DONALD]

 Three different kinds of provers can be discerned:

· those that want to mimic the human thought processes

· those that do not care about human thought, but try to make optimum use of the machine

· those that require human interaction.

There are domain specific and general theorem provers. Provers might be specialised in one mechanism e.g. resolution or they might use a variety of mechanisms.

 There are proof checkers i.e. programs that control the validity of a proof and proof generators.In the semantic web an inference engine will not serve to generate proofs but to check proofs; those proofs must be in a format that can be easily transported over the net.

2. Overview of principles

2.1. General remarks

 Automated reasoning is an important domain of computer science. The number of applications is constantly growing.

* proving of theorems in mathematics

* reasoning of intelligent agents

* natural language understanding

* mechanical verification of programs

* hardware verifications (also chips design)

* planning

* and ... whatever problem that can be logically specified (a lot!!)

Hilbert-style calculi have been trditionally used to characterize logic systems. These calculi usually consist of a few axiom schemata and a small number of rules that typically include modus ponens and the rule of substitution. [STANFORD]

2.2 Reasoning using resolution techniques: see the chapter on resolution.

2.3. Sequent deduction

[STANFORD] [VAN BENTHEM]

Gentzen analysed the proof-construction process and then devised two deduction calculi for classical logic: the natural deduction calculus (NK) and the sequent calculus (LK).

Sequents are expressions of the form A (B where both A and B are sets of formulas. An interpretation I satisfies the sequent iff either I does not entail a (for soma a in A) or I entails b (for some b in B). It follows then that proof trees in LK are actually refutation proofs like resolution.

A reasoning program, in order to use LK must actually construct a proof tree. The difficulties are:

1) LK does not specify the order in which the rules must be applied in the construction of a proof tree.

2) The premises in the rule ((and ((rules inherit the quantificational formula to which the rule is applied, meaning that the rules can be applied repeatedly to the same formula sending the proof search into an endless loop.

3) LK does not indicate which formula must be selected newt in the application of a rule.

4) The quantifier rules provide no indication as to what terms or free variables must be used in their deployment.

5) The application of a quantifier rule can lead into an infinitely long tree branch because the proper term to be used in the instantiation never gets chosen.

Axiom sequents in LK are valid and the conslusion of a rule is valid iff its premises are. This fact allows us to apply the LK rules in either direction, forwards from axioms to conslusion, or backwards from conclusion to axioms. Also with the exception of the cut rule, all the rules’premises are subformulas of their respective conclusions. For the purposes of automated deduction this is a significant fact and we would want to dispense with the cut rule; fortunately, the cut-free version of LK preserves its refutation completeness(Gentzen 1935). These results provide a strong case for constructing proof trees in backward fashion. Another reason for working backwards is that the truth-functional fragment of cut-free LK is confluent in the sense that the order in which the non-quantifier rules are applied is irrelevant.

Another form of LK is analytic tableaux.

2.4. Natural deduction

 [STANFORD] [VAN BENTHEM]

In natural deduction (NK) deductions are made from premisses by ‘introduction’ and ‘elimination’ rules.

Some of the objections for LK can be applied to NK.

1) NK does not specify in which order the rules must be applied in the construction of a proof.

2) NK does not indicate which formula must be selected next in the application of a rule.

3) The quantifier rules provide no indication as to what terms or free variables must be used in their deployment.

4) The application of a quantifier rule can lead into an infinitely long tree branch because the proper term to be used in the instantiation never gets chosen.

As in LK a backward chaining strategy is better focused.

Fortunately, NK enjoys the subformula property in the sense that each formula entering into a natural deduction proof can be restricted to being a subformula of (((({(}, where (is the set of auxiliary assumptions made by the not-elimination rule. By exploiting the subformula property a natural dedcution automated theorem prover can drastically reduce its search space and bring the backward application of the elimination rules under control. Further gains can be realized if one is willing to restrict the scope of NK’s logic to its intuistionistic fragment where every proof has a normal form in the sense that no formula is obtained by an introduction rule and then is eliminated by an elimination rule.

2.5. The matrix connection method

[STANFORD] Suppose we want to show that from (PvQ)&(P (R)&(Q(R) follows R. To the set of formulas we add ~R and we try to find a contradiction. First this is put in the conjuntive normal form:

(PvQ)&(~PvR)&(=QvR)&(~R).Then we represent this formula as a matrix as follows:

 P Q

 ~P R

 ~Q R

 ~R

The idea now is to explore all the possible vertical paths running through this matrix. Paths that contain two complementary literals are contradictory and do not have to be pursued anymore. In fact in the above matrix all paths are complementary which proves the lemma. The method can be extended for predicate logic ; variations have been implemented for higher order logic.

2.6 Term rewriting

Equality can be defined as a predicate. In /swap/log the sign = is used for defining equality e.g. :Fred = :human. The sign is an abbreviation for "http://www.daml.org/2001/03/daml+oil/equivalent". Whether it is useful for the semantic web or not, a set of rewrite rules for N3 (or RDF) should be interesting.

Here are some elementary considerations (after [DICK]).

A rewrite rule, written E ==> E', is an equation which is used in only one direction. If none of a set of rewrite rules apply to an expression, E, then E is said to be in normal form with respect to that set.

A rewrite system is said to be finitely terminating or noetherian if there are no infinite rewriting sequences E ==> E' ==> E'' ==> ...

We define an ordering on the terms of a rewrite rule where we want the right term to be more simpler than the left, indicated by E >> E'. When E >> E' then we should also have: (E) >> (E') for a substitution  Then we can say that the rewrite system is finitely terminating if and only if there is no infinite sequence E >> E' >> E'' ... We then speak of a well-founded ordering. An ordering on terms is said to be stable or compatible with term structure if E >> E' implies that

i) (E) >> (E') for all substitutions 
ii) f(...E...) >> f(...E..) for all contexts f(...)

If unique termination goes together with finite termination then every expression has just one normal form. If an expression c leads always to the same normal form regardless of the applied rewrire rules and their sequence then the set of rules has the propertry of confluence. A rewrite system that is both confluent and noetherian is said to be canonical. In essence, the Knuth-Bendix algorithm is a method of adding new rules to a noetherian rewrite system to make ik canonical (and thus confluent).

A critical expression is a most complex expression that can be rewritten in two different ways. For an expression to be rewritten in two different ways, there must be two rules that apply to it (or one rule that applies in two different ways).Thus, a critical expression must contain two occurrences of left-hand sides of rewrite rules. Unification is the process of finding the most general common instance of two expressions. The unification of the left-hand sides of two rules would therefore give us a critical expression to which both rules would be applicable. Simple unification, however, is not sufficient to find all critical expressions, because a rule may be applied to any part of an expression, not just the whole of it. For this reason, we must unify the left-hand side of each rule with all possible sub-expressions of left-hand sides. This process is called superposition. So when we want to generate a proof we can generate critical expressions till eventually we find the proof.

Superposition yields a finite set of most general critical expressions.

The Knuth_Bendix completion algorithm for obtaining a canonical set (confluent and noetherian) of rewrite rules:

(Initially, the axiom set contains the initial axioms, and the rule set is empty)

A while the axiom set is not empty do
B begin Select and remove an axiom from the axiom set;

C Normalise the axiom

D if the axiom is not of the form x= x then

 Begin

E order the axiom using the simplification ordering, >>, to

 Form a new rule (stop with failure if not possible);

F Place any rules whose left-hand side is reducible by the new rule

 back into the set of axioms;

G Superpose the new rule on the whole set of rules to find the set of

 critical pairs;

H Introduce a new axiom for each critical pair;

 End

 End.
Three possible results: -terminate with success

- terminate with failure: if no ordering is possible in step E

- loop without terminating

A possible strategy for proving theorems is in two parts. Firstly, the given axioms are used to find a canonical set of rewrite rules (if possible). Secondly, new equations are shown to be theorems by reducing both sides to normal form. If the normal forms are the same, the theorem is shown to be a consequence of the given axioms; if different, the theorem is proven false.

2.7. Mathematical induction

[STANFORD]

The implementation of induction in a reasoning system presents very challenging search control problems. The most important of these is the ability to detremine the particular way in which induction will be applied during the proof, that is, finding the appropriate induction schema. Related issues include selecting the proper variable of induction, and recognizing all the possible cases for the base and the inductive steps.

Lemma caching, problem statement generalisation, and proof planning are techniques particularly useful in inductive theorem proving.

[WALSH] For proving theorems involving explicit induction ripling is a powerful heuristic developed at Edinburgh. A difference match is made between the induction hypothesis and the induction conclusion such that the skeleton of the annotated term is equal to the induction hypothesis and the erasure of the annotation gives the induction conclusion. The annotation consists of a wave-front which is a box containing a wave-hole. Rippling is the process whereby the wave-front moves in a well-defined direction (e.g. to the top of the term) by using directed (annotated) rewrite rules.

2.8. Higher order logic

[STANFORD] Higher order logic differs from first order logic in that quantification over functions and predicates is allowed. In higher order logic unifiable terms do not always possess a most general unifier and higher order unifciation is itself undecidable. Higher order logic is also incomplete; we cannot always proof wheter a given lemma is true or false.

2.9. Non-classical logics

For the different kinds of logic see the overview of logic.

Basically [STANFORD] three approaches to non-classical logic:

1) Try to mechanize the non-classical deductive calculi.

2) Provide a formulation in first-order logic and let a classical theorem prover handle it.

3) Formulate the semantics of the non-classical logic in a first-order framework where resolution or connection-matrix methods would apply.

Automating intuistionistic logic has applications in software development since writing a program that meets a specification corresponds to the problem of proving the specification within an intuistionistic logic.

2.10. Lambda calculus

[GUPTA] The syntaxis of lambda calculus is simple. Be E an expression and I an identifier then E::= (\I.E) | (E1 E2) | I . \I.E is called a lambda abstraction; E1 E2 is an application and I is an identifier. Identifiers are bound or free. In \I.I*I the identifier I is bound. The free identifiers in an expression are denoted by FV(E).

FV(\I.E) = FV(E) – {I}

FV(E1 E2) = FV(E1) U FV(E2)

FV(I) = {I}

An expression E is closed if FV(E) = {}

The free identifiers in an expression can be affected by a substitution. [E1/I]E2 denotes the substitution of E1 for all free occurences of I in E2.

[E/I](\I.E1) = \I.E1

[E/I](\J.E1) = \J.[E/I]E1, if I <> J and J not in FV(E).

[E/I](\J.E1) = \K.[E/I][K/J]E1, if I <> J, J in FV(E) and K is new.

[E/I](E1 E2) = [E/I]E1 [E/I]E2

[E/I]I = E

[E/I]J = J, if J <> I

Rules for manipulating the lambda expressions:

alpha-rule: \I.E (\J.[J/I]E, if J not in FV(E)

beta-rule: (\I.E1)E2 ([E2/I]E1

eta-rule: \I.E I (E, if I not in FV(E).

The alpha-rule is just a renaming of the bound variable; the beta-rule is substitution and the eta-rule implies that lambda expressions represent functions.

Say that an expression, E, containds the subexpression (\I.E1)E2; the subexpression is called a redex; the expression [E2/I]E1 is its contractum; and the action of replacing the contractum for the redex in E, giving E’, is called a contraction or a reduction step. A reduction step is written E (E’. A reduction sequence is a series of reduction steps that has finite or infinite length. If the sequence has finite length, starting at E1 and ending at En, n>=0, we write E1 (*En. A lambda expression is in (beta-)normal form if it contains no (beta-)redexes. Normal form means that there can be no further reduction of the expression.

Properties of the beta-rule:

a) The confluence property (also called the Church-Rosser property) : For any lambda expression E, if E (*E1 and E (*E2, then there exists a lambda expression, E3, such that E1 (*E3 and E2 (*E3 (modulo application of the alpha-rule to E3).

b) The uniqueness of normal forms property: if E can be reduced to E’ in normal form, then E’ is unique (modulo application of the alpha-rule).

 There exists a rewriting strategy that always discovers a normal form. The leftmost-outermost rewriting strategy reduces the leftmost-outermost redex at each stage until nomore redexes exist.

c) The standardisation property: If an expression has a normal form, it will be found by the leftmost-outermost rewriting strategy.

2.11. Typed lambda-calculus

[HARRISON] There is first a distinction between primitive types and composed types. The function space type constructor e.g. bool -> bool has an important meaning in functional programming. Type variables are the vehicle for polymorphism. The types of expressions are defined by typing rules. An example: if s:sigma -> tau and t:sigma than s t: tau. It is possible to leave the calculus of conversions unchanged from the untyped lambda calculusif all conversions have the property of type preservation.
There is the important theorem of strong normalization: every typable term has a normal form, and every possible sequence starting from a typable term terminates. This looks good, however, the ability to write nonterminating functions is essential for Turing completeness, so we are no longer able to define all computable functions, not even all total ones. In order to regain Turing-completeness we simply add a way of defining arbitrary recursive functions that is well-typed.

2.12. Proof planning

[BUNDY] In proof planning common patterns are captured as computer programs called tactics. A tactic guides a small piece of reasoning by specifying which rules of inference to apply. (In HOL and Nuprl a tactic is an ML function that when applied to a goal reduces it to a list of subgoals together with a justification function.) Tacticals serve to combine tactics.

If the and-introduction (ai) and the or-introduction (oi) constitute (basic) tactics then a tactical could be:

ai THEN oi OR REPEAT ai.

The proof plan is a large, customised tactic. It consists of small tactics, which in turn consist of smaller ones, down to individual rules of inference.

A critic consists of the description of common failure patterns (e.g. divergence in an inductive proof) and the patch to be made to the proof plan when this pattern occur. These critics can, for instance, suggest proiving a lemma, decide that a more general theorem should be proved or split the proof into cases.

Here are some examples of tactics from the Coq tutorial.

Intro : applied to a (b ; a is added to the list of hypotheses.

Apply H : apply hypothesis H.

Exact H : the goal is amid the hypotheses.

Assumption : the goal is solvable from current assumptions.

Intros : apply repeatedly Intro.

Auto : the prover tries itself to solve.

Trivial : like Auto but only one step.

Left : left or introduction.

Right : right or introduction.

Elim : elimination.

Clear H : clear hypothesis H.

Rewrite : apply an equality.

Tacticals from Coq:

T1;T2 : apply T1 to the current goal and then T2 to the subgoals.

T;[T1|T2|…|Tn] : apply T to the current goal; T1 to subgoal 1; T2 to subgoal 2 etc…

2.13. Genetic algorithms

A “genetic algorithm” based theorem prover could be built as follows: take a axiom, apply at random a rule (e.g. from the Gentzen calculus) and measure the difference with the goal by an evaluation function and so on … The evaluation function can e.g. be based on the number and sequence of logical operators. The semantic web inference engine can easily be adapted to do experiments in this direction.

Overview of theorem provers

 [NOGIN] gives the following ordering:

* Higher-order interactive provers:

 - Constructive: ALF, Alfa, Coq, [MetaPRL, NuPRL]

 - Classical: HOL, PVS

* Logical Frameworks: Isabelle, LF, Twelf, [MetaPRL]

* Inductive provers: ACL2, Inka

* Automated:

 - Multi-logic: Gandalf, TPS

 - First-order classical logic: Otter, Setheo, SPASS

 - Equational reasoning: EQP, Maude

* Other: Omega, Mizar

Higher order interactive provers

 Constructive

Alf: abbreviation of “Another logical framework”. ALF is a structure editor for monommorphic Martin-Löf type theory.

 Nuprl: is based on constructive type theory.

Coq:

 Classical

HOL: Higher Order Logic: based on LCF approach built in ML. Hol can operate in automatic and interactive mode. HOL uses classical predicate calculus with terms from the typed lambda-calculus = Church’s higher-order logic.

PVS: (Prototype Verification System) based on typed higher order logic

Logical frameworks

Pfenning gives this definition of a logical framework [PFENNING_LF]:

A logical framework is a formal meta-language for deductive systems. The primary tasks supported in logical frameworks to varying degrees are

· specification of deductive systems,

· search for derivations within deductive systems,

· meta-programming of algorithms pertaining to deductive systems,

· proving meta-theorems about deductive systems.

In this sense lambda-prolog and even prolog can be considered to be logical frameworks. Twelf is called a meta-logical framework and could thus be used to develop logical-frameworks. The border between logical and meta-logical does not seem to be very clear : a language like lambda-prolog certainly has meta-logical properties also.

Twelf, Elf: An implementation of LF logical framework; LF uses higher-order abstract syntax and judgement as types. Elf combines LF style logic definition with lambda-prolog style logic programming. Twelf is built on top of LF and Elf.

 Twelf supports a variety of tasks: [PFENNING_1999]

Specification of object languages and their semantics, implementation of

algorithms manipulating object-language expressions and deductions, and formal development of the meta-theory of an object-language.

For semantic specification LF uses the judgments-as-types representation

technique. This means that a derivation is coded as an object whose type rep-

resents the judgment it establishes. Checking the correctness of a derivation

is thereby reduced to type-checking its representation in the logical framework

(which is efficiently decidable).
Meta-Theory. Twelf provides two related means to express the meta-theory of

deductive systems: higher-level judgments and the meta-logic M 2 .

A higher-level judgment describes a relation between derivations inherent in

a (constructive) meta-theoretic proof. Using the operational semantics for LF

signatures sketched above, we can then execute a meta-theoretic proof. While

this method is very general and has been used in many of the experiments men-

tioned below, type-checking a higher-level judgment does not by itself guarantee

that it correctly implements a proof.

Alternatively, one can use an experimental automatic meta-theorem proving

component based on the meta-logic M 2 for LF. It expects as input a

\Pi 2 statement about closed LF objects over a fixed signature and a termination

ordering and searches for an inductive proof. If one is found, its representation as a higher-level judgment is generated and can then be executed.
Isabelle: a generic, higher-order, framework for rapid proptotyping of

deductive systems [STANFORD].(Theorem proving environments : Isabelle/HOL,Isabelle/ZF,Isabelle/FOL.)

 Object logics can be fromulated within Isabelle’s metalogic.

Inference rules in Isabelle are represented as generalized Horn clauses and are applied using resolution. However the terms are higher order logic (may contain function variables and lambda-abstractions) so higher-order unification has to be used.

Automated provers

Gandalf : [CASTELLO] Gandalf is a resolution based prover for classical first-order logic and intuistionistic first-order logic. Gandalf implements a number of standard resolution strategies like binary resolution, hyperresolution, set of support strategy, several ordering strategies, paramodulation, and demodulation with automated ordering of equalities. The problem description has to be provided as clauses. Gandalf implements a large number of various search strategies. The deduction machinery of Gandalf is based in Otter’s deduction machinery. The difference is the powerful search autonomous mode. In this mode Gandalf first checks whether a clause set has certain properties, then selects a set of different strategies which are likely to be useful for a given problem and then tries all these strategies one after another, allocating less time for highly specialized and incomplete strategies, and allocating more time for general and complete strategies.

Otter : is a resolution-style theorem prover for first order logic with equality [CASTELLO]. Otter provides the inference rules of binary resolution, hyperresolution, UR-resolution and binary paramodulation. These inference rules take a small set of clauses and infer a clause; if the inferred clause is new, interesting, and usefull, then it is stored. Otter maintains four lists of clauses:

. usable: clauses that are available to make inferences.

. sos = set of support (Wos): see further.

. passive

. demodulators: these are equalities that are used as rules to rewrite newly inferred rules.

The main processing loop is as follows:

While (sos is not empty and no refutation has been found)

1) Let given_clause be the lightest clause in sos

2) Move given_clause from sos to usable.

3) Infer and process new clauses using the inference rules in effect; each new clause must have the given clause as one of its parents and members of usable as its other parents; new clauses that pass the retention test are appended to sos.

Other

Prolog

PPTP: Prolog Technology Theorem Prover: full first order logic with soundness and completeness.

Lambda-prolog: higher order constructive logic with types.

 Lambda prolgo uses hereditary Harrop formulas; these are also used in Isabelle.

TPS: is a theorem prover for higher-order logic that uses typed lambda-calculus as its logical representation language and is based on a connection type mechanism (see matrix connection method) that incorporates Huet’s unification algorithm.TPS can operate in automatic and interactive mode.

LCF (Stanford, Edinburgh, Cambridge) (Logic for Computable Functions):

 Stanford:[DENNIS]

· declare a goal that is a formula in Scotts logic

· split the goal into subgoals using subgoaling commands

· subgoals are solved using a simplifier or generating more subgoals

· these commands create data structures representing a formal proof

Edinburgh LCF

· solved the problem of a fixed set of subgoaling by inventing a metalanguage (ML) for scripting proof commands.

· A key idea: have a type called thm. The only values of type thm are axioms or are obtained from axioms by applying the inference rules.

Nqthm (Boyer and Moore): (New Quantified TheoreM prover) inductive theorem proving; written in Lisp.

Overview of different logic systems

1. General remarks

2. Propositon logics

3. First order predicate logic

 3.1. Horn logic

4. Higher order logics

5. Modal logic/temporal logic

6. Intuistionistic logic

7. Paraconsistent logic

8. Linear logic

General remarks

Logic for the internet does of course have to be sound but not necessarily complete.

Some definitions ([CENG])

First order predicate calculus allows variables to represent function letters.

Second order predicate calculus allows variables to also represent predicate letters.

Propositional calculus does not allow any variables.

A calculus is decidable if it admits an algorithmic representation, that is, if there is an algorithm that, for any given (and (, it can determine in a finite amount of time the answer, “Yes” or “No”, to the question “Does (entail (?”.

If a wwf (well formed formula) has the value true for all interpretations, it is called valid. Gödel’s undecidability theorem: there exist wff’s such that their being valid can not be decided. In fact first order predicate calculus is semi-decidable: if a wwf is valid, this can be proved; if it is not valid this can not in general be proved.

[MYERS].

The Curry-Howard isomorphism is an isomorphism between the rules of natural deduction and the typing proof rules. An example:

A1 A2 e1: t1 e2:t2

-------------- --------------------

A1 & A2 <e1, e2>:t1*t2

This means that if a statement P is logically derivable and isomorph with t then there is a program and a value of type t.

1) Proof and programs

In logics a proof system like the Gentzen calculus starts from assumptions and a lemma. By using the proof system (the axioms and theorems) the lemma becomes proved.

On the other hand a program starts from data or actions and by using a programming system arrives at a result (which might be other data or an action; however actions can be put on the same level as data). The data are the assumptions of the program or proof system and the output is the lemma. As with a logical proof system the lemma or the results are defined before the program starts. (It is supposed to be known what the program does). (In learning systems perhaps there could exist programs where it is not known at all moments what the program is supposed to do).

So every computer program is a proof system.

A logic system has characteristics completeness and decidability. It is complete when every known lemma can be proved.(Where the lemma has to be known sematically which is a matter of human interpretation.) It is decidable if the proof can be given.

A program that uses e.g. natural deduction calculus for propositional logic can be complete and decidable. Many contemporary programming systems are not decidable. But systems limited to propositional calculus are not very powerful. The search for completeness and decidability must be done but in the mean time, in order to solve problems (to make proofs) flexible and powerful programming systems are needed even if they do not have these two characteristics.

A program is an algorithm. All algorithms are proofs. In fact all processes in the universe can be compared to proofs: they start with input data (the input state or assumptions) and they finish with ouput data (the output state or lemma). Then what is the completeness and decidability of the universe?

If the universe is complete and decidable it is determined as well; free will can not exist; if on the other hand it is not complete and decidable free will can exist, but, of course, not everything can be proved.

2. Propositon logics

3. First order predicate logic

Points 2 , 3 mentioned for completeness. See [BENTHEM].

 3.1. Horn logic: see above the remarks on resolution.

4. Higher order logics

[DENNIS].

In second order logic quantification can be done over functions and predicates. In first order logic this is not possible.

Important is the Gödel incompletness theorem : the corectness of a lemma cannot always be proven.

Another problem is the Russell paradox : P(P) iff ~P(P). The solution of Russell : disallow expressions of het kind P(P) by introducing typing so P(P) will not be well typed. (Types are interpreted as Scotts domains (CPOs).Keep this ?)

In the logic of computable functions (LCF) terms are from the typed lambda calculus and formulae are from predicate logic. This gives the LCF family of theorem provers : Stanford LCF, Edinburgh LCF, Cambridge LCF and further : Isabelle, HOL, Nuprl and Coq.

5. Modal logic (temporal logic)

[LINDHOLM] [VAN BENTHEM]Modal logics deal with a number of possible worlds, in each of which statements of logic may be made. In propositional modal logics the statements are restricted to those of propositional logic. Furthermore, a reachability relation between the possible worlds is defined and a modal operator (usually denoted by (), which define logic relations between the worlds.

The standard interpretation of the modal operator is that (P is true in a world x if P is true in any world that is reachable from x, i.e. in all worlds y where R(x,y). (P is also true if there are no successor worlds. The (operator can be read as « necessarily ».

Usually, a dual operator (is also introduced. The definition of (is ~(~, translating into « possible ».

There is no « single modal logic », but rather a family of modal logics which are defined by axioms, which constrain the reachability relation R. For instance, the modal logic D is characterized by the axiom (P ((P, which is equivalent to reqiring that all worlds must have a successor.

A proof system can work with semantic tableaux for modal logic.

The addition of (and (to predicate logic gives modal predicate logic.
Temporal logic: in temporal logic the possible worlds are moments in time. The operators (and (are replaced by respectively by G (going to) and F (future). Two operators are added : H (has been) and P (past).

Epistemic logic: here the worlds are considered to be knowledge states of a person (or machine). (is replaced by K (know) and (by ~K~ (not know that = it might be possible).

Dynamic logic: here the worlds are memory states of a computer. The operators indicate the necessity or the possibility of state changes from one memory state to another. A program is a sequence of worlds. The accessibility relation is T(() where (indicates the program. The operators are : [(] and <(>. State b entails [(] (iff for each state accesible from b (is valid. State b entails <(> if there is a state accessible with (valid. (([(] (means : with input condition (all accessible states will have output condition ((correctness of programs).

Different types of modal logic can be combined e.g. [(] K ((K [(](which can be interpreted as: if after execution I know that (implies that I know that (will be after execution.

S4 or provability logic : here (is interpreted as a proof of A.

6. Intuistionistic or constructive logic

[STANFORD] In intuistionistic logic the meaning of a statement resides not inits truth conditions but in the means of proof or verification. In classical logic p v ~p is always true ; in constructive logic p or ~p has to be ‘constructed’. If forSome x.F then effectively it must be possible to compute a value for x.

The BHK-interpretation of constructive logic :

(Brouwer, Heyting, Kolmogorov)

e) A proof of A and B is given by presenting a proof of A and a proof of B.

f) A proof of A or B is given by presenting either a proof of A or a proof of B.

g) A proof of A (B is a procedure which permits us to transform a proof of A into a proof of B.

h) The constant false has no proof.

A proof of ~A is a procedure that transform a hypothetical proof of A into a proof of a contradiction.

7. Paraconsistent logic

[STANFORD]

The development of paraconsistent logic was initiated in order to challenge the logical principle that anything follows from contradictory premises, ex contradictione quodlibet (ECQ). Let [image: image18.png]

be a relation of logical consequence, defined either semantically or proof-theoretically. Let us say that [image: image19.png]

is explosive iff for every formula A and B, {A , ~A} [image: image20.png]

B. Classical logic, intuitionistic logic, and most other standard logics are explosive. A logic is said to be paraconsistent iff its relation of logical consequence is not explosive.

Also in most paraconsistent systems the disjunctive syllogism does not hold:

From A, ~ A v B we cannot conclude B. Some systems:

Non-adjunctive systems: from A , B the inference A & B fails.

Non-truth functional logic: the value of A is independent from the value of ~A (both can be one e.g.).

Many-valued systems: more than two truth values are possible.If one takes the truth values to be the real numbers between 0 and 1, with a suitable set of designated values, the logic will be a natural paraconsistent fuzzy logic.

Relevant logics.

8.Linear logic

[LINCOLN] Patrick Lincoln Linear Logic SIGACT 1992 SRI and Stanford University.

In linear logic propositions are not viewed as static but more like ressources.

If D implies (A and B) ; D can only be used once so we have to choose A or B.

In linear logic there are two kinds of conjuntions: multiplicative conjunction where A (B stands for the proposition that one has both A and B at the same time; and additive conjuntion A & B stands for a choice between A and B but not both. The multiplicative disjunction written A (B stands for the proposition “if not A, then B” . Additive disjunction A (B stands for the possibility of either A or B, but it is not known which. There is the linear implication A –o B which can be interpreted as “can B be derived using A exactly once?”.

There is a modal storage operator. !A can be thought of as a generator of A’s.

There exists propositional linear logic, first order linear logic and higher order linear logic. A sequent calculus has been defined.
Recently 1990 propositional linear logic has been shown to be undecidable.

Bibliography

[BUNDY] Alan Bundy , Artificial Mathematicians, May 23, 1996, http://www.dai.ed.ac.uk/homes/bundy/tmp/new-scientist.ps.gz

[CASTELLO] R.Castello e.a. Theorem provers survey. University of Texas at Dallas. http://citeseer.nj.nec.com/409959.html

[CENG] André Schoorl, Ceng 420 Artificial intelligence University of Victoria, http://www.engr.uvic.ca/~aschoorl/ceng420/
[COQ] Huet e.a. RT-0204-The Coq Proof Assistant : A Tutorial, http://www.inria.fr/rrt/rt-0204.html.

[DENNIS] Louise Dennis Midlands Graduate School in TCS, http://www.cs.nott.ac.uk/~lad/MR/lcf-handout.pdf
[DICK] A.J.J.Dick, Automated equational reasoning and the knuth-bendix algorithm: an informal introduction, Rutherford Appleton Laboratory Chilton, [Didcot] OXON OX11 OQ, http://www.site.uottawa.ca/~luigi/csi5109/church-rosser.doc/
[DONALD] A sociology of proving. http://dream.dai.ed.ac.uk/papers/donald/subsectionstar4_7.html
[GENESERETH] Michael Genesereth, Course Computational logic, Computer Science Department, Stanford University.

[GUPTA] Amit Gupta & Ashutosh Agte, Untyped lambda calculus, alpha-, beta- and eta- reductions, April 28/May 1 2000, http://www/cis/ksu.edu/~stefan/Teaching/CIS705/Reports/GuptaAgte-2.pdf

[HARRISON] J.Harrison, Introduction to functional programming, 1997.

[KERBER] Manfred Kerber, Mechanised Reasoning, Midlands Graduate School in Theoretical Computer Science, The University of Birmingham, November/December 1999, http://www.cs.bham.ac.uk/~mmk/courses/MGS/index.html
[LINDHOLM] Lindholm, Exercise Assignment Theorem prover for propositional modal logics, http://www.cs.hut.fi/~ctl/promod.ps
[MYERS] CS611 LECTURE 14 The Curry-Howard Isomorphism, Andrew Myers.

[NADA] Arthur Ehrencrona, Royal Institute of Technology Stockholm, Sweden, http://cgi.student.nada.kth.se/cgi-bin/d95-aeh/get/umeng
[PFENNING_1999] Pfenning e.a., Twelf a Meta-Logical framework for deductive Systems, Department of Computer Science, Carnegie Mellon University, 1999.

[PFENNING_LF] http://www-2.cs.cmu.edu/afs/cs/user/fp/www/lfs.html
[STANFORD] Stanford Encyclopedia of philosophy - Automated

reasoning http://plato.stanford.edu/entries/reasoning-automated/
[UMBC] TimothyW.Finin, Inference in first order logic, Computer Science and Electrical Engineering, University of Maryland Baltimore Country, http://www.cs.umbc.edu/471/lectures/9/sld040.htm
[VAN BENTHEM] Van Benthem e.a., Logica voor informatici, Addison Wesley 1991.

[WALSH] Toby Walsh, A divergence critic for inductive proof, 1/96, Journal of Artificial Intelligence Research, http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/walsh96a-html/section3_3.html
Annexe 5. The source code of RDFEngine

module RDFEngine where

import RDFData

import Array

import RDFGraph

import InfML

import RDFML

import Utils

import Observe

import InfData

-- RDFEngine version of the engine that delivers a proof

-- together with a solution

-- perform an inference step

-- The structure InfData contains everything which is needed for

-- an inference step

infStep :: InfData -> InfData

infStep inf = solve inf

solve inf

 | goals1 == [] = backtrack inf

 | otherwise = choose inf1

 where goals1 = goals inf

 (g:gs) = goals1

 level = lev inf

 graphs1 = graphs inf

 matchlist = alts graphs1 level g

 inf1 = inf{goals=gs, ml=matchlist}

backtrack inf

 | stack1 == [] = inf

 | otherwise = choose inf1

 where stack1 = stack inf

 ((StE subst1 gs ms):sts) = stack1

 pathdata = pdata inf

 level = lev inf

 newpdata = reduce pathdata (level-1)

 inf1 = inf{stack=sts,

 pdata=newpdata,

 lev=(level-1),

 goals=gs,

 subst=subst1,

 ml=ms}

choose inf

 | matchlist == [] = backtrack inf

 -- anti-looping controle

 | ba `stepIn` pathdata = backtrack inf

 | (not (fs == [])) && bool = inf1

 | otherwise = inf2

 where matchlist = ml inf

 ((Match subst1 fs ba):ms) = matchlist

 subst2 = subst inf

 gs = goals inf

 stack1 = (StE subst1 gs ms):stack inf

 (f:fss) = fs

 bool = f == ([],[],"0")

 pathdata = pdata inf

 level = lev inf

 newpdata = (PDE ba (level+1)):pathdata

 inf1 = inf{stack=stack1,

 lev=(level+1),

 pdata=newpdata,

 subst=subst1 ++ subst2}

 inf2 = inf1{goals=fs ++ gs}

-- get the alternatives, the substitutions and the backwards rule applications.

-- getMatching gets all the statements with the same property or

-- a variable property.

alts :: Array Int RDFGraph -> Level -> Fact -> MatchList

alts ts n g = matching (renameSet (getMatching ts g) n) g

-- match a fact with the triple store

matching :: TS -> Statement -> MatchList

matching ts f = elimNothing (map (unifsts f) ts)

 where elimNothing [] = []

 elimNothing (Nothing:xs) = elimNothing xs

 elimNothing (Just x:xs) = x:elimNothing xs

-- getmatching gets all statements with a property matching with the goal

getMatching :: Array Int RDFGraph -> Statement -> [Statement]

getMatching graph st = concat (map ((flip gpredv) pred) graphs)

 where (st1:sst) = cons st

 pred = p (ghead (cons st) st)

 graphs = getgraphs graph

 ghead [] st = error ("getMatching: " ++ show st)

 ghead t st = head t

-- get all graphs of the array

getgraphs grapharr = getgraphsH grapharr 1

 where getgraphsH grapharr n

 | n>maxg = []

 | otherwise = grapharr!n:getgraphsH grapharr (n+1)

renameSet :: [Statement] -> Int -> [Statement]

renameSet sts n = map ((flip renameStatement) n) sts

renameStatement :: Statement -> Int -> Statement

renameStatement st n = stf (renameTripleSet (ants st) n)

 (renameTripleSet (cons st) n) (prov st)

-- rename the variables in a tripleset

renameTripleSet :: TripleSet -> Int -> TripleSet

renameTripleSet [] level = []

renameTripleSet t@(x:xs) level = renameTriple x level:renameTripleSet xs level

 where renameTriple t@(Triple(s, p, o)) l = Triple(s1, p1, o1)

 where s1 = renameAtom s l

 p1 = renameAtom p l

 o1 = renameAtom o l

 renameAtom (Var v) l = Var (renameVar v l)

 renameAtom (TripleSet t) l =

 TripleSet (renameTripleSet t l)

 renameAtom any l = any

 renameVar (UVar s) l =

 (UVar ((intToString l) ++ "$_$" ++ s))

 renameVar (EVar s) l =

 (EVar ((intToString l) ++ "$_$" ++ s))

 renameVar (GVar s) l =

 (GVar ((intToString l) ++ "$_$" ++ s))

 renameVar (GEVar s) l =

 (GEVar ((intToString l) ++ "$_$" ++ s))

-- unify a fact with a statement

-- data Match = Match {msub::Subst, mgls::Goals, bs::BackStep}

-- unify :: Fact -> Statement -> Maybe Match

-- data PDE = PDE {pbs::BackStep, plev::Level}

-- type PathData = [PDE]

-- in module RDFUnify.hs

-- see if a backstep is returning

stepIn :: BackStep -> PathData -> Bool

stepIn bs [] = False

stepIn bs ((PDE bs1 _):bss)

 | bs == bs1 = True

 | otherwise = stepIn bs bss

-- backtrack the pathdata

reduce :: PathData -> Level -> PathData

reduce [] n1 = []

reduce ((PDE _ n):bss) n1

 | n>n1 = reduce bss n1

 | otherwise = bss

-- description of an inference step

--

-- data structures:

--

-- type InfData = (Array Int RDFGRaph,Goals,Stack,Level,

-- PathData,Subst,[Solution])

--

-- 1a) take a goal from the goallist. The goallist is empty.Goto 6.

-- 1b) take a goal from the goallist. Search the alternatives + backapp.

-- Goto 2.

-- 2a) There are no alternatives. Backtrack. Goto 8.

-- 2b) Select one goal from the alternatives;add the backap.

-- push the rest on the stack.

-- Goto 9.

-- 6) Add a solution to the solutionlist;

-- backtrack. Goto 8.

-- 8a) The stack is empty. Goto 9.

-- 8b) Retrieve Goals from the stack; reduce backapp.

-- Goto 9

-- 9) End of the inference step.

--

-- If the stack returns empty then this inference step was the last step.

-- Substitutions and Unification of RDF Triples

-- Adapted for RDFEngine G.Naudts 5/2003

-- See also: Functional Pearls Polytypic Unification by Jansson & Jeuring

module RDFUnify where

import RDFGraph

import RDFML

import RDFData

import Observe

import InfData

--- Substitutions:

-- An elementary substitution is represented by a triple. When applying the substitution the variable

-- in the triple is replaced with the resource.

-- The int indicates the originating RDFGraph.

-- type ElemSubst = (Var, Resource)

-- type Subst = [ElemSubst]

nilsub :: Subst

nilsub = []

-- appESubstR applies an elementary substitution to a resource

appESubstR :: ElemSubst -> Resource -> Resource

appESubstR (v1, r) v2

 | (tvar v2) && (v1 == gvar v2) = r

 | otherwise = v2

-- applyESubstT applies an elementary substitution to a triple

appESubstT :: ElemSubst -> Triple -> Triple

appESubstT es TripleNil = TripleNil

appESubstT es t =

 Triple (appESubstR es (s t), appESubstR es (p t), appESubstR es (o t))

-- appESubstSt applies an elementary substitution to a statement

appESubstSt :: ElemSubst -> Statement -> Statement

appESubstSt es st = (map (appESubstT es) (ants st),

 map (appESubstT es) (cons st), prov st)

-- appSubst applies a substitution to a statement

appSubst :: Subst -> Statement -> Statement

appSubst [] st = st

appSubst (x:xs) st = appSubst xs (appESubstSt x st)

testAppSubstTS = show (appSubstTS [substex] tauTS)

substex = (UVar "person", URI "testex")

-- appSubstTS applies a substitution to a triple store

appSubstTS :: Subst -> TS -> TS

appSubstTS subst ts = map (appSubst subst) ts

--- Unification:

-- unifyResource r1 r2 returns a list containing a single substitution s which is

-- the most general unifier of terms r1 r2. If no unifier

-- exists, the list returned is empty.

unifyResource :: Resource -> Resource -> Maybe Subst

unifyResource r1 r2

|(tvar r1) && (tvar r2) && r1 == r2 =

 Just [(gvar r1, r2)]

 | tvar r1 = Just [(gvar r1, r2)]

 | tvar r2 = Just [(gvar r2, r1)]

| r1 == r1 = Just []

| otherwise = Nothing

unifyTsTs :: TripleSet -> TripleSet -> Subst

unifyTsTs ts1 ts2 = concat res1

 where res = elimNothing

 ([unifyTriples t1 t2|t1 <- ts1, t2 <- ts2])

 res1 = [sub |Just sub <- res]

elimNothing [] = []

elimNothing (x:xs)

| x== Nothing = elimNothing xs

| otherwise = x:elimNothing xs

unifyTriples :: Triple -> Triple -> Maybe Subst

unifyTriples TripleNil TripleNil = Nothing

unifyTriples t1 t2 =

 if (subst1 == Nothing) || (subst2 == Nothing)

 || (subst3 == Nothing) then Nothing

 else Just (sub1 ++ sub2 ++ sub3)

 where subst1 = unifyResource (s t1) (s t2)

 subst2 = unifyResource (p t1) (p t2)

 subst3 = unifyResource (o t1) (o t2)

 Just sub1 = subst1

 Just sub2 = subst2

 Just sub3 = subst3

-- unify two statements

unify :: Statement -> Statement -> Maybe Match

unify st1@(_,_,s1) st2@(_,_,s2)

 | subst == [] = Nothing

 | (trule st1) && (trule st2) = Nothing

 | trule st1 = Just (Match subst (transTsSts (ants st1) s1) (st2,st1))

 | trule st2 = Just (Match subst (transTsSts (ants st2) s2) (st2,st1))

 | otherwise = Just (Match subst [stnil] (st2,st1))

 where subst = unifyTsTs (cons st1) (cons st2)

-- RDFProlog top level module

--

module RPro where

import RDFProlog

import CombParse

import Interact

import RDFData

import RDFGraph

import Array

import RDFML

import Observe

import RDFEngine

import Utils

import InfML

import InfData

emptyGraph = graph [] 1 "sys"

type Servers = [(String,InfData)]

graphsR :: Array Int RDFGraph

graphsR = array (1,maxg) [(i,graph [] i "sys")| i <- [1 .. maxg]]

inf = Inf graphsR [] [] (1::Int) [] [] [] []

inf1 = Inf graphsR [] [] (1::Int) [] [] [] []

servers = [("server1",inf),("server2",inf1)]

start = do putStr ("Enter command"

 ++ " (? for help):\n")

 rpro servers inf

 return ""

hhead [] = 'x'

hhead is = head is

server = inf

server1 = inf1

rpro :: Servers -> InfData -> IO String

rpro servers inf =

 do let param = getparamInf inf "auto(on)."

 if param /= "" then (step servers inf)

 else

 do

 is <- getLine

 let (bool,fi,se) = parseUntil ' ' is

 case (abbrev is) of

 "q" -> return is

 "m" -> menu servers inf

 "s" -> step servers inf

 "h" -> help servers inf

 "g" -> setpauto servers inf

 -- 'r' -> -- read files

 -- 'p' -> readGraphs inf se

 "e" -> execMenu se

 "qe" -> getQuery servers inf

 _ -> errmsg servers inf is

-- get a query and load it in inf

getQuery servers inf =

 do putStr "Enter your query:\n"

 is <- getLine

 let is1 = is ++ "."

 parse = map clause (lines is1)

 clauses = [r | ((r,""):_) <- parse]

 (ts, _, _) = transTS (clauses, 1, 1, 10)

 inf1 = inf{goals=ts}

 rpro servers inf1

 return ""

abbrev is

 | startsWith is "qe" = "qe"

 | startsWith is "q" = "q"

 | startsWith is "stop" = "q"

 | startsWith is "end" = "q"

 | startsWith is "halt" = "q"

 | startsWith is "s" = "s"

 | startsWith is "h" = "h"

 | startsWith is "?" = "h"

 | startsWith is ":?" = "h"

 | startsWith is "g" = "g"

 | startsWith is "e" = "e"

 | otherwise = ""

setpauto servers inf =

 let inf1 = setparamInf inf "auto(on)."

 in

 do rpro servers inf1

 return ""

arpro :: Servers -> InfData -> InfData -> IO String

arpro servers inf info =

 do is <- getLine

 let (bool,fi,se) = parseUntil ' ' is

 case (hhead is) of

 'q' -> return is

 's' -> astep servers inf info

 -- 'h' -> help servers inf

 -- '?' -> help servers inf

 -- 'g' ->

 -- 'r' -> -- read files

 -- 'p' -> readGraphs inf se

 -- 'e' -> execMenu se

 _ -> errmsg servers inf is

step servers inf

 | goals1 == [] =

 do putStr showe

 let inf1 = delparamInf inf "auto(on)."

 rpro servers inf1

 return ""

 | act == "inf" && goals1 == [] =

 do putStr (showd ++ "\n" ++ shows ++ "\n")

 rpro servers inf3

 return ""

 | otherwise = do case act of

 -- do an IO action;return rpro infx

 "action" -> do action g servers inf

 "noinf" -> do rpro servers inf1

 return ""

 "inf" -> do putStr showd

 rpro servers inf2

 return ""

 where act = checkPredicate goals1 inf -- checks whether this predicate

-- provokes an IO action, executes a builtin or needs inferencing.

 goals1 = goals inf

 (g:gs) = goals1

 goals2 = goals inf2

 inf1 = actPredicate goals1 inf

 inf2 = infStep inf

 inf3 = getsols inf2

 showd = "step:\n" ++"goal:\n" ++ sttppro g ++

 "\ngoallist:\n" ++ sgoals goals2 ++ "\nsubst:\n"

 ++ ssubst (subst inf2) ++ "\npdata:\n" ++ showpd (pdata inf2)

 ++ "\n"

 shows = "solution:\n" ++ ssols (sols inf3) ++ "\n"

 stack1 = stack inf2

 endinf = stack1 == [] && goals1 == []

 showe = "End:\n" ++ ssols (sols inf) ++ "\n"

astep servers inf info

 | goals1 == [] =

 let -- add the results to inf and eliminate the

 -- proven goals

 sols1 = sols inf

 infa = addresults sols1 info

 in

 do putStr ("query:\n" ++ show sols1 ++ "\n")

 rpro servers infa

 return ""

 | act == "inf" && goals2 == [] =

 do putStr (showd ++ "\n" ++ shows ++ "\n")

 arpro servers inf3 info

 return ""

 | otherwise = do case act of

 -- do an IO action;return rpro infx

 "action" -> do action g servers inf

 "noinf" -> do arpro servers inf1 info

 return ""

 "inf" -> do putStr showd

 arpro servers inf2 info

 return ""

 where act = checkPredicate goals1 inf -- checks whether this predicate

-- provokes an IO action, executes a builtin or needs inferencing.

 goals1 = goals inf

 (g:gs) = goals1

 goals2 = goals inf2

 inf1 = actPredicate goals1 inf

 inf2 = infStep inf

 inf3 = getsols inf2

 showd = "autostep:\n" ++"goal:\n" ++ sttppro g ++

 "\ngoallist:\n" ++ sgoals goals2 ++ "\nsubst:\n"

 ++ ssubst (subst inf2) ++ "\npdata:\n" ++ showpd (pdata inf2)

 ++ "\n"

 shows = "solution:\n" ++ ssols (sols inf3) ++ "\n"

 stack1 = stack inf2

 endinf = stack1 == [] && goals2 == []

 showe = "End:\n" ++ ssols (sols inf) ++ "\n"

getsols inf = inf1

 where pathdata = pdata inf

 backs = [ba|(PDE ba _) <- pathdata]

 subst1 = subst inf

 sols1 = (Sol subst1 (convbl (reverse backs) subst1)):

 sols inf

 inf1 = inf{sols=sols1}

checkPredicate goals1 inf

 | goals1 == [] = error ("checkPredicate: empty goals list")

 | otherwise =

 case pred of

 "load" -> "action"

 "query" -> "action"

 "end_query"-> "action"

 "print" -> "action"

 otherwise -> "inf"

 where t = thead (cons (g)) g

 pred = grs (p t)

 (g:gs) = goals1 -- get the goal

 thead [] g = error ("checkPredicate: " ++ show g)

 thead t g = head t

-- actPredicate executes a builtin

actPredicate goals inf = inf

 where (g:gs) = goals

getInf [] server = error ("Wrong query: non-existent server.")

getInf ((name,inf):ss) server

 | server == name = inf

 | otherwise = getInf ss server

-- get the query for the secondary server

addGoalsQ inf1 inf = inf1{goals=gls}

 where (g:gs) = goals inf

 gls = getTillEnd gs

getTillEnd [] = []

getTillEnd (g:gs)

 | gmpred g == "end_query" = []

 | otherwise = g:getTillEnd gs

-- type Closure = [(Statement,Statement)]

-- if st1 == st2 check if st1 is in graph of inf

-- if st1 is a rule check if all antecedents are in closure

-- before the rule as st1

-- verifyClosure closure inf

-- verifySolution

-- a solution contains a substitution and a closure

-- type Solution = (Subst,Closure)

-- adds the results after verifying

addresults sols inf

 | goals2 == [] = inf3

 | otherwise = inf2

 where goals1 = goals inf

 inf1 = inf{goals=(elimTillEnd goals1),

 ml=(transformToMl sols)}

 inf2 = choose inf1

 goals2 = goals inf2

 inf3 = getsols inf2

transformToMl sols =

 [(Match s [] (stnil,stnil))|(Sol s _) <- sols]

elimTillEnd [] = []

elimTillEnd (g:gs)

 | pred == "end_query" = gs

 | otherwise = elimTillEnd gs

 where t = head(cons g)

 pred = grs(p t)

action g servers inf = do case pred of

 -- for query get the server indicated from the servers

 -- list; the context must be switched to this

 -- server

 -- change InfData and call RPro; restore old

 -- infdata and add results

 "query" -> let server = grs(o (head(cons g)))

 inf1 = getInf servers server

 inf2 = addGoalsQ inf1 inf

 in

 do astep servers inf2 inf

 "load" -> do list <- readFile obj

 let graph1 = makeRDFGraph list 3

 graphs1 = (graphs inf1)//[(3,graph1)]

 inf2 = inf{graphs=graphs1}

 rpro servers inf2

 return ""

 "print" -> do putStr (obj ++ "\n")

 rpro servers inf1

 return ""

 where t = ahead (cons g) g

 pred = grs (p t)

 obj = grs(o t)

 graph = (graphs inf)!3

 (gl:gls) = goals inf

 inf1 = inf{goals=gls} -- take the goal away

 ahead [] g = error ("action: " ++ show g ++ "\n")

 ahead t g = head t

errmsg servers inf is = do putStr ("You entered: " ++ is ++ "\nPlease, try again.\n")

 rpro servers inf

 return ""

--- Main program read-solve-print loop:

signOn :: String

signOn = "RDFProlog version 2.0\n\n"

separate [] = []

separate filest

 | bool = fi:separate se

 | otherwise = [filest]

 where (bool,fi,se) = parseUntil ' ' filest

readGraphs :: InfData -> String -> IO InfData

readGraphs inf filest = do let files = separate filest

 putStr signOn

 putStr ("Reading files ...\nEnter command"

 ++ " (? for help):\n")

 listF@(f:fs) <- (sequence (map readFile files))

 let graphs1 = graphs inf

 query = transF f

 (_,_,graphs2) = enterGraphs (fs,2,graphs1)

 enterGraphs :: ([String],Int,Array Int RDFGraph)

 -> ([String],Int,Array Int RDFGraph)

 enterGraphs ([],n,graphs1) = ([],n,graphs1)

 enterGraphs (f:fs,n,graphs1)

 = enterGraphs (fs,n+1,graphs2)

 where graph = makeRDFGraph f n

 graphs2 = graphs1//[(n,graph)]

 return (Inf graphs2 query [] 1 [] [] [] [])

transF f = ts

 where (ts, _, _) = transTS (clauses, 1, 1, 10)

 parse = map clause (lines f)

 clauses = [r | ((r,""):_) <- parse]

-- type InfData = (Array Int RDFGraph,Goals,Stack,Level,

-- PathData,Subst,[Solution],String)

-- replace the double point in a string by a point

replDP :: Char -> Char

replDP ':' = '.'

replDP c = c

replSDP :: String -> String

replSDP s = map replDP s

help servers inf =

 let print s = putStr (s ++ "\n") in

 do print "h : help"

 print "? : help"

 print "q : exit"

 print "s : perform a single inference step"

 print "g : go; stop working interactively"

 print "m : menu"

 print "e : execute menu item"

 print "qe : enter a query"

-- print ("p filename1 filename2 : read files\n" ++

-- " " ++

-- "give command s or g to execute")

 rpro servers inf

 return ""

menu servers inf= let print s = putStr (s ++ "\n") in

 do

 print "Type the command e.g. \"e pro11.\""

 print "Between [] are the used files."

 print "x1 gives the N3 translation."

 print "x2 gives the solution.\n"

 print "pro11 [authen.axiom.pro,authen.lemma.pro]"

 print "\nEnter \"e item\"."

 rpro servers inf

 return ""

-- print "pr12 [authen.axiom.pro,authen.lemma.pro]"

-- print "pr21 [sum.a.pro,sum.q.pro]"

-- print "pr22 [sum.a.pro,sum.q.pro]"

-- print "pr31 [boole.axiom.pro,boole.lemma.pro]"

-- print "pr32 [boole.axiom.pro,boole.lemma.pro]"

-- print "pr41 [club.a.pro,club.q.pro]"

-- print "pr42 [club.a.pro,club.q.pro]"

execMenu se = do case se of

 "pro11" -> pro11

pro11 = do inf2 <- readGraphs inf "authen.lemma.pro authen.axiom.pro"

 inf3 <- readGraphs inf1 "authen.lemma.pro authen.axiom1.pro"

 let servers = [("server1",inf2),("server2",inf3)]

 rpro servers inf2

 return ""

pro21 = do inf2 <- readGraphs inf "authen.lemma1.pro authen.axiom1.pro"

 inf3 <- readGraphs inf1 "authen.lemma1.pro authen.axiom1.pro"

 let servers = [("server1",inf2),("server2",inf3)]

 rpro servers inf2

 return ""

pro31 = do inf2 <- readGraphs inf "flight.q.pro flight_rules.pro trust.pro"

 inf3 <- readGraphs inf1 "air_info.pro"

 inf4 <- readGraphs inf1 "International_air.pro"

 let servers = [("myServer",inf2),("airInfo",inf3),("intAir", inf4)]

 rpro servers inf2

 return ""

-- Representation of Prolog Terms, Clauses and Databases

-- Adaptation from Mark P. Jones November 1990, modified for Gofer 20th July 1991,

-- and for Hugs 1.3 June 1996.

-- Made by G.Naudts January 2003

-- The RDFProlog statements are translated to an intermediary format

-- and then transformed to triples. In this way experiments with transforming full prolog

-- to RDF Triples canbe done

--

module RDFProlog

where

import List

import CombParse

import RDFData

import Utils

import ToN3

import RDFGraph

--import N3Unify

--import N3Engine

import Observe

infix 6 :>

--- Prolog Terms:

type Id = String

type Atom = String

data Term = VarP Id | Struct Atom [Term]

 deriving (Show, Eq)

data Clause = [Term] :> [Term]

 deriving (Show, Eq)

data Database = Db [(Atom,[Clause])]

 deriving (Show,Eq)

-- testdata

var1 = VarP "X"

struct1 = Struct "Ter" [var1,Struct "t1" [], Struct "t2" []]

struct2 = Struct "ter1" [var1,Struct "t12" [], Struct "t22" []]

struct3 = Struct "ter2" [var1,Struct "t13" [], Struct "t23" []]

struct4 = Struct "ter3" [var1,Struct "t14" [], Struct "t24" []]

clause1 = [struct1,struct2] :> [struct3, struct4]

clause2 = [struct1,struct4] :> []

ts = [clause1, clause2]

rdfType = "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

testTransTS = putStr(tsToN3 ts1)

 where (ts1, _, _) = (transTS (ts, 1, 1, 1))

-- type Varlist = [Resource]

-- the first number is for the anonymous subject.

-- the second is for numbering variables

-- The third is the provenance number

transTS :: ([Clause], Int, Int, Int) -> (TS, Int, Int)

transTS ([], nr1, nr2, nr3) = ([], nr1, nr2)

transTS ((d:ds), nr1, nr2, nr3) = (d1:dbO, nr12, nr22)

 where (d1, nr11, nr21) = transClause (d, nr1, nr2, nr3)

 (dbO, nr12, nr22) = transTS (ds, nr11, nr21, nr3)

testTransVarP = show(transVarP var1)

transVarP (VarP id) = Var (UVar id)

testTransClause = statementToN3(first3(transClause (clause1, 1, 1, 1)))

first3 (a,b,c) = a

first2 (a, b) = a

-- the first number is for the anonymous subject.

-- the second number is for numbering variables

-- the third number is the provenance info

-- transforms a clause in prolog style to triples

transClause :: (Clause, Int, Int, Int) -> (Statement, Int, Int)

transClause ((terms1 :> terms2), nr1, nr2, nr3)

 |ts1O == [] = (([], tsO, intToString nr3), nr12, nr2+1)

 |otherwise = ((tsO, ts1O, intToString nr3), nr12, nr2+1)

 where (ts, nr11) = transTerms (terms1, nr1)

 (ts1, nr12) = transTerms (terms2, nr11)

 tsO = numVars ts nr2

 ts1O = numVars ts1 nr2

numVars :: TripleSet -> Int -> TripleSet

numVars [] nr = []

numVars ts nr

 = map (numTriple nr) ts

 where

 numTriple nr (Triple(s,p,o)) =

 Triple(numRes s nr, numRes p nr, numRes o nr)

 numRes (Var (UVar v)) nr = Var (UVar s)

 where s = ("_" ++ intToString nr) ++ "?" ++ v

 numRes a nr = a

testTransTerms = tripleSetToN3 (first2(transTerms ([struct1,struct2], 1)))

-- the number is for the anonymous subject.

transTerms :: ([Term], Int) -> (TripleSet, Int)

transTerms ([], nr1) = ([], nr1)

transTerms ((t:ts), nr1)

 |testT t = error ("Invalid format: transTerms " ++ show t)

 |otherwise = (t1 ++ t2, nr12)

 where (t1, nr11) = transStruct (t, nr1)

 (t2, nr12) = transTerms (ts, nr11)

 testT (VarP id) = True

 testT t = False

testTransStruct = (tripleSetToN3 (first2(transStruct (struct1, 1))))

-- this transforms a structure (n-ary predicate nut not nested) to triples

-- the number is for the anonymous subject.

-- the structure can have arity 0,1,2 or more (4 cases)

transStruct :: (Term, Int) -> (TripleSet, Int)

transStruct ((Struct atom terms@(t:ts)), nr1) =

 case length terms of

 -- a fact

 0 -> ([Triple(subject,property,property1)],nr1+1)

 -- a unary predicate

 1 -> ([Triple(subject,property1, o1)],nr1+1)

 -- a real triple

 2 -> ([Triple(s, property1, o)], nr1)

 -- a predicate with arity > 2

 otherwise -> (ts1, nr1+1)

 where

 varV = "T$$$" ++ (intToString nr1)

 subject = Var (EVar varV)

 property = URI ("a " ++ rdfType)

 property1 = makeProperty atom

 makeProperty (x:xs)

 |isUpper x = Var (UVar atom)

 |otherwise = URI atom

 (x1:xs1) = terms

 o1 = makeRes x1

 makeTwo (x:(y:ys)) = (makeRes x, makeRes y)

 (s, o) = makeTwo terms

 ts1 = makeTerms terms subject atom

transStruct str = ([],0)

-- returns a triple set.

makeTerms terms subject atom = makeTermsH terms subject 1 atom

 where makeTermsH [] subject nr atom = []

 makeTermsH (t:ts) subject nr atom

 = Triple (subject, property, makeRes t):

 makeTermsH ts subject (nr+1) atom

 where property = URI pVal

 pVal = atom ++ "_" ++ intToString nr

makeRes (VarP id) = transVarP (VarP id)

makeRes (Struct atom@(a:as) terms)

 |length terms /= 0 = error ("invalid format " ++ show (Struct atom terms))

 |startsWith atom "\"" = Literal atom1

 |otherwise = URI atom

 where (_, atom1, _) = parseUntil '"' as

--- String parsing functions for Terms and Clauses:

--- Local definitions:

letter :: Parser Char

letter = sat (\c->isAlpha c || isDigit c ||

 c `elem` "'_:;+=-*&%$#@?/.~!<>")

variable :: Parser Term

variable = sat isUpper `pseq` many letter `pam` makeVar

 where makeVar (initial,rest) = VarP (initial:rest)

struct :: Parser Term

struct = many letter `pseq` (sptok "(" `pseq` termlist `pseq` sptok ")"

 `pam` (\(o,(ts,c))->ts)

 `orelse`

 okay [])

 `pam` (\(name,terms)->Struct name terms)

--- Exports:

term :: Parser Term

term = sp (variable `orelse` struct)

termlist :: Parser [Term]

termlist = listOf term (sptok ",")

clause :: Parser Clause

clause = sp (listOf term (sptok ",")) `pseq` (sptok ":>" `pseq` listOf term (sptok ",")

 `pam` (\(from,body)->body)

 `orelse` okay [])

 `pseq` sptok "."

 `pam` (\(head,(goals,dot))->head:>goals)

clauseN :: Parser Clause

clauseN = sp (listOf term (sptok ",")) `pseq` (sptok ":>" `pseq` listOf term (sptok ",")

 `pam` (\(from,body)->body)

 `orelse` okay [])

 `pseq` sptok ":"

 `pam` (\(head,(goals,dot))->head:>goals)

makeRDFGraph :: String -> Int -> RDFGraph

makeRDFGraph sourceIn nr = rdfG

where parse1 = map clause (lines sourceIn)

 clauses1 = [r1 | ((r1,""):_) <- parse1]

 (ts1, _, _) = transTS (clauses1, 1, 1, nr)

 rdfG = getRDFGraph (changeAnons ts1) "ts"

-- read a list of filenames; the last one is the query.

readN3Pro :: [String] -> IO()

readN3Pro filenames = do listF@(x:xs) <- (sequence (map readFile (reverse filenames)))

 let parse = map clause (lines x)

 clauses = [r | ((r,""):_) <- parse]

 (ts, _, _) = transTS (clauses, 1, 1, 1)

 [parse1] = map ((flip makeRDFGraph) 1) xs

 (y:ys) = xs

 putStr (show parse)

 -- putStr (checkGraph parse1)

changeAnons :: TS -> TS

changeAnons [] = []

changeAnons ((ts1,ts2,int):xs)

 | ts1 == [] = ([], map changeTriple ts2,int):changeAnons xs

 | otherwise = (map changeTriple ts1, map changeTriple ts2,int):

 changeAnons xs

 where changeTriple (Triple(Var (EVar s), p, o))

 |containsString "T$$$" s = Triple (URI s, p, o)

 |otherwise = Triple (Var (EVar s), p, o)

 changeTriple t = t

test = readN3Pro ["testPro.n3", "testPro.n3"]

pr11 = readN3Pro ["authen.axiom.pro", "authen.lemma.pro"]

pr21 = readN3Pro ["sum.a.pro", "sum.q.pro"]

pr31 = readN3Pro ["boole.axiom.pro", "boole.lemma.pro"]

pr41 = readN3Pro ["club.a.pro", "club.q.pro"]

pr51 = readN3Pro ["group1.a.pro", "group1.q.pro"]

pr61 = readN3Pro ["group2.a.pro", "group2.q.pro"]

pr71 = readN3Pro ["bhrama.a.pro", "bhrama.q.pro"]

pr81 = readN3Pro ["protest.a.pro", "protest.q.pro"]

menuR= let print s = putStr (s ++ "\n") in

 do

 print "Type the command = first word."

 print "Between [] are the used files."

 print "x1 gives the N3 translation."

 print "pr11 [authen.axiom.pro,authen.lemma.pro]"

 print "pr21 [sum.a.pro,sum.q.pro]"

 print "pr31 [boole.axiom.pro,boole.lemma.pro]"

 print "pr41 [club.a.pro,club.q.pro]"

--- End of N3Prolog.hs

module RDFHash where

import "Array"

import "Utils"

import "Observe"

import "RDFData"

import "ToN3"

-- principle of the dictionary

-- hash of a string = integer part of

-- ((ord(char1) * ... * ord(char2))/500)*5

-- This leaves the first 4 entries unused;

-- five entries are reserved for each hash-value;

-- when four are filled in extra space is reserved ;

-- the fifth entry points to the extra space (second entry

-- of the tuple; the string part is nil.)

-- 1000 places are reserved for extensions;

-- for a maximum number of atoms 3500.

-- The index is a string; the content type is a list of integers.

-- The integers represent statements.

-- Author: G.Naudts. E-mail: naudts_vannote@yahoo.com

-- This is a version for a RDF triple store;

-- statements are referenced by an integer number

-- type Statement = ([Triple],[Triple])

nthentry = 5

dictSize :: Int

dictSize = 3500

modSize = 500

type Dict = Array Int ([Int], String, Int)

type ParamArray = Array Int Int

type Params = Array Int Int

params :: Array Int Int

params = array (1,b) [(i,0)| i <- [1 .. b]]

b :: Int

b = 10

dict :: Dict

dict = array (1,dictSize) [(i,([-1],"",0)) | i <- [1 .. dictSize]]

-- show the elements from int1 to int2

showElements :: Int -> Int -> Dict -> String

showElements n1 n2 dict

 = foldr (++) "" [showElement nr dict| nr <- [n1 .. n2]]

testShowElement = showElement 16 dict

showElement :: Int -> Dict -> String

showElement nr dict = "Content: " ++ concat(map intToString c) ++

 " | index " ++ s1 ++ "| int " ++ show n1 ++ "\n"

 where (c, s1, n1) = dict!nr

testInitDict = show (initDict params)

initDict :: ParamArray -> ParamArray

initDict params = params4

 where params1 = params // [(1, 2520)] -- entry 1 is begin of overflow zone

 params2 = params1 // [(2, 3500)] -- entry 2 is array size of dict

 params3 = params2 // [(3, 500)] -- entry 3 is modsize for hashing

 params4 = params3 // [(4, 4)] -- entry 4 is zone size

f2 = show (ord 'a') -- result 97

hash :: String -> Int

hash "" = -1

hash s

 |bv1 = -1

 |x < 0 = fromInteger(x + modSize)

 |otherwise = fromInteger x

 where x = ((fromInt(hash1 s)) `mod` modSize)*nthentry + 1

 bv1 = x == -1

-- hash1 makes the product of the ordinal numbers minus 96

hash1 :: String -> Int

hash1 "" = 1

hash1 (x:xs) = (ord x) * (hash1 xs) * 7

testHash = show [(nr, hash (intToString nr))| nr <- [600 .. 700]]

-- Next Int = gives the first entry of an overflow zone

-- Oflow indicates an overflow zone has to bee created

data Entry = Occupied|Free|Next Int|OFlow|Full|FreeBut

testNrs = [1,2,3,4] :: [Int]

testDict = show (bool,s)

 where params1 = initDict params

 (dict1, params2) = putEntry "test" testNrs dict params1

 (bool, s) = getEntry "test" dict1 params2

-- delete an entry

-- the entry must be searched and then deleted;

-- the hole can be filled by a new entry

delEntry :: String -> Dict -> ParamArray -> (Dict, ParamArray)

delEntry index dict params = (dict1, params)

 where index1 = hash index

 (c, s1, next1) = dict!index1

 dict1 = dict // [(index1, ([], "", next1))]

testPutEntry = showElement 941 dict1

 where params1 = initDict params

 (dict1, _) = (putEntry "test" testNrs dict params1)

-- put a string i

-- format of an entry = ([Int], String, Int).

-- Steps: 1) get a hash of the string

-- 2) read the entry. There are four possibilities:

-- a) The entry is empty. If it is the nth-entry (global constant)

-- then an extension must be created.

-- b) it is an available entry: put the tuple in place.

-- c) The content = []. This is a reference to another zone.

-- Get the referred adres (the int)

-- and restart at 2 with a new entry.

-- d) The string != "". Read the next entry.

putEntry :: String -> [Int] -> Dict

 -> ParamArray -> (Dict, ParamArray)

putEntry s content dict params

 = putInHash index content 0 dict params s

where index = hash s

testPutInHash = putStr ((foldr (++) "" (map show res)) ++ "\n"

 ++ (showElements 320 330 dictn2

 ++ showElements 2520 2540 dictn2))

 where res = [readEntry 320 (intToString nr) dictn1 params3| nr <- [1..10]]

 params1 = initDict params

 n = 11 -- number of entries

 n1 = 320 -- index

 (_, _, dictn, params2) = putN (n, n1, dict, params1)

 putN (0, n1, dict, params1) = (0, n1, dict, params1)

 putN (n, n1 , dict, params1) = putN (n-1, n1, dict1, params2)

 where s = intToString n

 triple = 5

 (dict1, params2) = putInHash n1 ([triple]) 0 dict params1 s

 (dictn1, params3) = delEntry s1 dictn params2

 s1 = intToString 648

 (dictn2, params4) = putEntry s1 testNrs dictn1 params3

makeTriple s = Triple(URI s, URI s, URI s)

-- index is the hash of the property

-- content is the list of statement numbers

putInHash index content n dict params s

 |s == s1 = (dict4, params)

 |otherwise = case entry of

 Full -> (dict, params)

 OFlow -> putInHash oFlowNr content 0 dict1 params1 s

 Free -> (dict2, params)

 FreeBut -> (dict3, params)

 Occupied -> case bv1 of

 True -> (dict, params)

 False -> putInHash (index + 1) content (n + 1) dict params s

 Next next -> putInHash next content 0 dict params s

 where (c, s1, next1) = dict!index

 dict4 = dict // [(index,(content, s, next1))]

 entry = (checkEntry index n dict params)

 n1 = 0

 oFlowNr = params!1 -- begin of overflow zone

 dict1 = dict // [(index,([],"",oFlowNr))]

 oFlowNr1 = oFlowNr + 5

 -- store updated begin of overflow zone

 params1 = params // [(1,oFlowNr1)]

 dict2 = dict // [(index, (content, s, index + 1))]

 dict3 = dict // [(index, (content, s, next1))]

 bv1 = c == content

-- check the status of an entry

-- The first int is the array index; the second int is the index in the zone;

-- if this int is equal to the zonesize then overflow.

checkEntry :: Int -> Int -> Dict -> ParamArray -> Entry

checkEntry index nb dict params

 |index > params!2 = Full

 |next == 0 && nb == zoneSize = OFlow

 |next == 0 = Free

 |next /= 0 && nb == zoneSize = Next next

 |next /= 0 && c == [] = FreeBut

 |next /= 0 = Occupied

where zoneSize = params!4

 (c,_,next) = dict!index -- next gives index of overflow zone

testGetEntry = getEntry "test" dict1 params2

 where params1 = initDict params

 (dict1, params2) = (putEntry "test" testNrs dict params1)

-- get content from the dictionary

-- get a hash of the searched for entry.

-- read at the hash-entry; three possibilities:

-- a) the string is found at the entry; return the content

-- b) next index = 0. Return False.

-- c) the index is greater than the maximum size; return False.

-- d) get the next string.

getEntry :: String -> Dict -> ParamArray -> (Bool, [Int])

getEntry s dict params

 = readEntry index s dict params

 where index = hash s

readEntry index s dict params

 |bool == False = (False, c)

 |bool == True = (True, c)

 where (bool, c) = checkRead index s dict params

-- check an entry for reading and return the content

checkRead :: Int -> String -> Dict -> ParamArray -> (Bool, [Int])

checkRead index s dict params

 |bv1 = (False, [])

 |s == s1 = (True, c)

 |next == 0 = (False, [])

 |otherwise = checkRead next s dict params

 where (c, s1, next) = dict!index

 bv1 = index > params!2

module RDFGraph where

import "RDFHash"

import "RDFData"

import "Utils"

--import "XML"

--import "GenerateDB"

--import "Transform"

import "Array"

import "Observe"

-- This module is an abstract data type for an RDFGraph.

-- It defines an API for accessing the elements of the graph.

-- This module puts the triples into the hashtable

-- * elements of the index:

-- - the kind of triple: database = "db", query = "query", special databases

-- - the property of the triples in the tripleset

-- - the number of the triple in the database

-- Of course other indexes can be used to store special information like e.g.

-- the elements of a list of triples.

-- The string gives the type; the int gives the initial value for numbering

-- the triplesets

-- Triples with variable predicates are stored under index "Var"

-- A db and a query are a list of triples.

-- the array contains the triples in their original sequence

-- the first triple gives the last entry in the array

-- the second triple gives the dbtype in the format

-- Triple (URI "dbtype", URI "type", URI "")

-- in the dictionary the triples are referenced by their number in the array

data RDFGraph = RDFGraph (Array Int Statement, Dict, Params)

 deriving (Show,Eq)

testGraph = getRDFGraph tauTS "ts"

-- get the abstract datatype

getRDFGraph :: TS -> String -> RDFGraph

getRDFGraph ts tstype =

 RDFGraph (array1, dict2, params2)

 where

 typeStat = ([],[Triple (URI "tstype", URI tstype, URI "o")],"-1")

 array2 = rdfArray//[(2, typeStat)]

 (array1, dict2, params2) = putTSinGraph ts (dict, params1) array2

 params = array (1,bound) [(i, 0)| i <- [1..bound]]

 dict = array (1,dictSize) [(i,([-1],"",0)) | i <- [1 .. dictSize]]

 params1 = initDict params

 rdfArray = array (1,arraySize) [(i,([],[],"-1"))| i<- [1..arraySize]]

-- delete an entry from the array

delFromArray :: Array Int Statement -> Int -> Array Int Statement

delFromArray array1 nr = array5

 where array2 = array (1,arraySize) [(i,([],[],"-1"))| i<- [1..arraySize]]

 array3 = copyElements array1 1 (nr-1) array2 1

 array4 = copyElements array1 (nr+1) (num-1) array3 (nr+1)

 ([],[Triple (s1,p,URI s)],"-1") = array1!1

 num = stringToInt s -- last entry in array

 t = ([],[Triple (URI "s", URI "li",

 URI (intToString (num-1)))],"-1") -- size - 1

 array5 = array4//[(1,t)] -- reset size

-- copy elements from array1 to array2 and return array2

-- copy elements from nr1 to nr2 from array1 to array2 starting

-- at element nr3 from array2

copyElements :: Array Int Statement -> Int -> Int -> Array Int Statement

 -> Int -> Array Int Statement

copyElements array1 nr1 nr2 array2 nr3

 | nr1 > nr2 = array2

 | otherwise = copyElements array1 (nr1+1) nr2 array3 (nr3+1)

 where array3 = array2//[(nr3,array1!nr1)]

bound :: Int

bound = 10

-- maximum size of the array

arraySize :: Int

arraySize = 1500

testPutTSinGraph = show (array, triple)

 where params1 = initDict params

 (array, dict2, params2) = putTSinGraph tauTS (dict,params1) array2

 (bool, nlist@(x:xs)) = getEntry tind dict2 params2

 triple = array!x

 typeStat = ([],[Triple (URI "tstype", URI tstype, URI "o")],"-1")

 array2 = arr//[(2, typeStat)]

 tstype = "ts"

arr = array (1,arraySize)[(i,([],[],"-1"))|i <- [1..arraySize]]

tind = "r$_$:authenticated"

-- input is a list of statements; the statements are numbered and put

-- into an array; the statement number is the entry into the array.

-- The statements with the same property are put together in a dictionary

-- entry.In the dictionary statements are identified

-- by their entry number into the array.

putTSinGraph :: [Statement] -> (Dict,Params) -> Array Int Statement ->

 (Array Int Statement, Dict, Params)

putTSinGraph ts (dict,params) array = (array1, dict1, params1)

 where (_, (dict1, params1), array1, _) =

 putTSinGraphH (ts, (dict,params), array, 3)

 putTSinGraphH ([], (dict,params), array, n)

 = ([], (dict,params), array1, intToString n)

 where t = ([],[Triple (URI "s", URI "li",

 URI (intToString n))],"-1")

 array1 = array//[(1,t)]

 putTSinGraphH ((x:xs), (dict, params), array, n)

 = putTSinGraphH (xs, (dict1, params1), array1, n+1)

 where array1 = array // [(n, x)]

 (dict1, params1) = putStatementInHash (x,n) dict params

-- consider only statements

-- all statements with the same property are in one entry

-- the statement is identified by a number

putStatementInHash :: (Statement,Int) -> Dict -> Params -> (Dict, Params)

putStatementInHash (([],[],_),_) dict params = (dict,params)

putStatementInHash (t,num) dict params

 | bool2 && bool3 = (dict3, params3)

 | bool2 = (dict4, params4)

 | bool1 = (dict1, params1) -- statement and entry already in hashtable

 | otherwise = (dict2, params2) -- new entry

 where -- put a Statement

 (_, (Triple (_, prop, _)):ts,_) = t

 -- test if variable rpedicate

 bool2 = testVar prop

 ind2 = makeIndex (URI "$$var$$") ""

 (bool3, nlist1) = getEntry ind2 dict params

 (dict3, params3) = putEntry ind2 (num:nlist1) dict params

 (dict4, params4) = putEntry ind2 [num] dict params

 -- not a variable predicate

 ind1 = makeIndex prop ""

 (bool1, nlist) = getEntry ind1 dict params

 (dict1, params1) = putEntry ind1 (num:nlist) dict params

 (dict2, params2) = putEntry ind1 [num] dict params

 testVar (Var v) = True

 testVar p = False

putStatementInHash _ dict params = (dict,params)

putStatementInGraph :: RDFGraph -> Statement -> RDFGraph

putStatementInGraph g st

 = RDFGraph (array2, dict1, params1)

where RDFGraph (array, dict, params) = g

 ([],[Triple (s1,p,URI s)],int) = array!1 -- last entry in array

 num = stringToInt s

 (ts1,ts2,_) = st

 st1 = (ts1,ts2,s)

 array1 = array//[(1,([],[Triple

 (s1,p, URI (intToString (num+1)))],s))]

 array2 = array//[(num+1,st1)]

 (dict1, params1) = putStatementInHash (st1,num+1) dict params

-- get the tstype from a rdf graph

getTSType :: RDFGraph -> String

getTSType (RDFGraph (array, _, _)) = f

 where ([],[Triple (_,dbtype,_)],_) = array!2

 (URI s) = dbtype

 (bool, f, _) = parseUntil ' ' s

testReadPropertySet =show (readPropertySet testGraph (URI ":member :member"))

-- read all triples having a certain property

readPropertySet :: RDFGraph -> Resource -> [Statement]

readPropertySet (RDFGraph (array, dict, params)) property

 = propList

 where ind = makeIndex property ""

 -- get the property list

 (bool, nlist) = getEntry ind dict params

 propList = getArrayEntries array nlist

-- get all statements with a variable predicate

getVariablePredicates :: RDFGraph -> [Statement]

getVariablePredicates g = readPropertySet g (URI "$$var$$")

testGetArrayEntries = show (getArrayEntries array [4..4])

 where RDFGraph (array, _, _) = testGraph

getArrayEntries array nlist = list

 where (_, _, list) = getArrayEntriesH (array, nlist, [])

 getArrayEntriesH (array, [], list) = (array, [], list)

 getArrayEntriesH (array, (x:xs), list) =

 getArrayEntriesH (array, xs, list ++ [(array!x)])

testFromRDFGraph = fromRDFGraph testGraph

-- fromRDFGraph returns a list of all statements in the graph.

fromRDFGraph :: RDFGraph -> [Statement]

fromRDFGraph graph = getArrayEntries array [1..num]

 where RDFGraph (array, _, _) = graph

 ([],[Triple (_, _, URI s)],_) = array!1

 num = stringToInt s

testCheckGraph = putStr (checkGraph testGraph)

-- checkGraph controls the consistency of an RDFGraph

checkGraph :: RDFGraph -> String

checkGraph graph = tsToRDFProlog stats ++ "\n\n" ++ propsets

 where stats = fromRDFGraph graph

 predlist = [pred|(_,Triple(_,pred,_):ts,_) <- stats]

 propsets = concat (map ((tsToRDFProlog.readPropertySet graph)) predlist)

-- tsToRDFProlog transforms a triple store to RDFProlog format

tsToRDFProlog :: TS -> String

tsToRDFProlog [] = ""

tsToRDFProlog (x:xs) = toRDFProlog x ++ "\n" ++ tsToRDFProlog xs

-- toRDFProlog transforms a statement (abstract syntax) to RDFProlog

-- (concrete syntax).

toRDFProlog :: Statement -> String

toRDFProlog ([], [], _) = ""

toRDFProlog ([], ts,_) = triplesetToRDFProlog ts ++ "."

toRDFProlog (ts1,ts2,_) = triplesetToRDFProlog ts1 ++ " :> " ++

 triplesetToRDFProlog ts2 ++ "."

triplesetToRDFProlog :: TripleSet -> String

triplesetToRDFProlog [] = ""

triplesetToRDFProlog [x] = tripleToRDFProlog x

triplesetToRDFProlog (x:xs) = tripleToRDFProlog x ++ "," ++

 triplesetToRDFProlog xs

tripleToRDFProlog :: Triple -> String

tripleToRDFProlog (Triple (s,p,o)) =

 getRes p ++ "(" ++ getRes s ++ "," ++ getRes o ++ ")"

testAddPredicate = readPropertySet gr1 (URI ":member :member")

 where gr1 = addPredicate testGraph ("test","member","test",5::Int)

-- adds a predicate to the RDF graph

-- the predicate is in the form: (subject,property,object)

addPredicate :: RDFGraph -> (String,String,String,Int) -> RDFGraph

addPredicate graph (subject, property, object,int)

 = RDFGraph (array2, dict1, params1)

 where RDFGraph (array, dict, params) = graph

 ([],[Triple (s1,p,URI s)],_) = array!1 -- last entry in array

 num = stringToInt s

 array1 = array//[(1,([],[Triple (s1,p,

 URI (intToString (num+1)))],"-1"))]

 t = ([],[Triple (URI subject,URI property,URI object)],intToString int)

 array2 = array//[(num+1,t)]

 (dict1, params1) = putStatementInHash (t,num+1) dict params

testDelPredicate = putStr (checkGraph graph1)

 where graph1 = delPredicate testGraph 5

-- delete a predicate from the graph

delPredicate :: RDFGraph -> Int -> RDFGraph

delPredicate graph nr = RDFGraph (array2, dict1, params1)

 where RDFGraph (array1, dict, params) = graph

 -- get the predicate

 (_,[Triple(_,p,_)],_) = array1!nr

 -- delete the entry from the array

 array2 = delFromArray array1 nr

 s = makeIndex p ""

 (bool, list) = getEntry s dict params

 list1 = [nr1|nr1 <-list, nr /= nr1]

 (dict1, params1) = putInHash (hash s) list1 0 dict params s

-- delete a statement from the graph when given the statement

delStFromGraph :: RDFGraph -> Statement -> RDFGraph

delStFromGraph g@(RDFGraph (array,dict,params)) st@(st1,(Triple(s,p,o):xs),_)

-- the statement is not in the graph

 | not bool = g

 | otherwise = delFromGraph g n

where ind = makeIndex p ""

 -- get the property list

 (bool, nlist) = getEntry ind dict params

 (n:ns) = [n1|n1 <- nlist, st == array!n1]

-- delete a predicate but only from the graph not from the array

delFromGraph :: RDFGraph -> Int -> RDFGraph

delFromGraph graph nr = RDFGraph (array1, dict1, params1)

 where RDFGraph (array1, dict, params) = graph

 -- get the predicate

 (_,[Triple(_,p,_)],_) = array1!nr

 s = makeIndex p ""

 (bool, list) = getEntry s dict params

 list1 = [nr1|nr1 <-list, nr /= nr1]

 (dict1, params1) = putInHash (hash s) list1 0 dict params s

-- make an index from a property

-- the string indicates the kind of database

-- different items of the index are separated by '$_$'

makeIndex :: Resource -> String -> String

makeIndex (URI s) s1 = s1 ++ "$_$" ++ r

 where (bool, f, r) = parseUntil ' ' s

makeIndex (Literal s) s1 = s1 ++ "$_$" ++ r

 where (bool, f, r) = parseUntil ' ' s

makeIndex (Var (UVar s)) s1 = s1 ++ "$_$" ++ "Var"

makeIndex (Var (EVar s)) s1 = s1 ++ "$_$" ++ "Var"

makeIndex (Var (GVar s)) s1 = s1 ++ "$_$" ++ "Var"

makeIndex (Var (GEVar s)) s1 = s1 ++ "$_$" ++ "Var"

makeIndex o s1 = ""

testMakeIndex = show (makeIndex (URI ":member :member") "db")

module RDFData where

import Utils

data Triple = Triple (Subject, Predicate, Object) | TripleNil

 deriving (Show, Eq)

type Subject = Resource

type Predicate = Resource

type Object = Resource

data Resource = URI String | Literal String | TripleSet TripleSet |

 Var Vare | ResNil

 deriving (Show,Eq)

type TripleSet = [Triple]

data Vare = UVar String | EVar String | GVar String | GEVar String

 deriving (Show,Eq)

type Query = [Statement]

type Antecedents = TripleSet

type Consequents = TripleSet

-- getRes gets the string part of a resource

getRes :: Resource -> String

getRes (URI s) = s

getRes (Var (UVar s)) = s

getRes (Var (EVar s)) = s

getRes (Var (GVar s)) = s

getRes (Var (GEVar s)) = s

getRes (Literal s) = s

getRes r = ""

-- a statement is a triple (TripleSet,TripleSet,String)

-- a fact is a tuple ([],Triple,String)

-- The string gives the provenance in the form: "n/n1" where n

-- is the nuber of the RDFGraph and n1 is the entry into the triple array.

type Statement = (TripleSet, TripleSet,String)

type Fact = Statement -- ([],Triple,String)

type Rule = Statement

-- an elementary substitution is a tuple consisting of a variable and a resource

type ElemSubst = (Vare, Resource)

type Subst = [ElemSubst]

-- a triple store is a set of statements

type TS = [Statement]

type FactSet = [Statement]

type Varlist = [Resource]

--type InfData = (Array Int RDFGraph,Goals,Stack,Level,

-- PathData,Subst,[Solution])

type Trace = String

testTransTsSts = show (transTsSts tsU2 "1")

-- transform a tripleset to a statement

-- triples with the same anonymous subject are grouped.

transTsSts :: [Triple] -> String -> [Statement]

transTsSts [] s = [([],[],s)]

transTsSts ts s = [([],t,s)|t <- ts1]

 where (_, ts1) = group (ts, [])

 group ([], t) = ([], t)

 group (ts, t) = group (ts1, t ++ [t1])

 where (ts1,t1) = takeSame (ts,[])

 takeSame ([], t) = ([], t)

 takeSame ((t:ts), t1)

 | t1 == [] = takeSame (ts, [t])

 | bv1 && bv2 = takeSame (ts, (t1 ++ [t]))

 | otherwise = (t:ts, t1)

 where Triple(s, _, _) = t

 ss = getRes s

 bv1 = startsWith ss "T$$$"

 (tt:tts) = t1

 bv2 = t == tt

-- testdata

tripleC = Triple (TripleSet [tau1, tau2], URI "p", TripleSet [tau1, tau2])

-- testdata

triple1 = Triple(URI "subject", URI "predicate", URI "object")

triple2 = Triple(Var(UVar "_sub"), URI "predicate", Var (UVar "_obj"))

tsU2 = [tau1, tau2, tau3]

tsU1 = [tau4, tau5]

-- example unifyTwoTripleSets

tu1 = Triple(Var (UVar "?v1"), URI "spouseIn",

 Var (UVar "?v2"))

tu2 = Triple(URI "Frank", URI "gc:childIn",

 Var (UVar "?v2"))

tu3 = Triple(Var (UVar "?v1"), URI "gc:childIn",

 Var (UVar "?v3"))

tu4 = Triple(Var (UVar "?v4"), URI "gc:spouseIn",

 Var (UVar "?v3"))

tu5 = Triple(Var (UVar "?v4"), URI "gc:sex",

 URI "M")

tsu1 = [tu1, tu2, tu3, tu4]

tsu2 = [tu6, tu7, tu8, tu9, tu10, tu11, tu12, tu13, tu14, tu15, tu16, tu17]

tu6 = Triple(URI "Frank", URI "gc:childIn",

 URI "Naudts_VanNoten")

tu7 = Triple(URI "Frank", URI "gc:sex", URI "M")

tu8 = Triple(URI "Guido", URI "gc:spouseIn",

 URI "Naudts_VanNoten")

tu9 = Triple(URI "Guido", URI "gc:sex", URI "M")

tu10 = Triple(URI "Christine", URI "gc:spouseIn",

 URI "Naudts_VanNoten")

tu11 = Triple(URI "Christine", URI "gc:sex", URI "F")

tu12 = Triple(URI "Guido", URI "gc:childIn",

 URI "Naudts_Huybrechs")

tu13 = Triple(URI "Guido", URI "gc:sex", URI "M")

tu14 = Triple(URI "Martha", URI "gc:spouseIn",

 URI "Naudts_Huybrechs")

tu15 = Triple(URI "Martha", URI "gc:sex", URI "F")

tu16 = Triple(URI "Pol", URI "gc:spouseIn",

 URI "Naudts_Huybrechs")

tu17 = Triple(URI "Pol", URI "gc:sex", URI "M")

-- example authen.axiom.n3 and authen.lemma.n3

tau1 = Triple(URI "<mailto:jos.deroo.jd@belgium.agfa.com>",

 URI "member", URI "<http://www.agfa.com>")

tau2 = Triple(URI "<http://www.agfa.com>", URI "w3cmember",

 URI "<http://www.w3.org>")

tau3 = Triple(URI "<http://www.agfa.com>", URI "subscribed",

 URI "<mailto:w3c-ac-forum@w3.org/>")

tau4 = Triple(Var (UVar "person"), URI "member", Var (UVar "institution"))

tau5 = Triple(Var (UVar "institution"), URI "w3cmember",

 URI "<http://www.w3.org>")

tau6 = Triple(Var (UVar "institution"), URI "subscribed",

 Var (UVar "mailinglist"))

tau7 = Triple (Var (UVar "person"), URI "authenticated",

 Var (UVar "mailinglist"))

ants1 = [tau4, tau5, tau6]

rulet = (ants1, [tau7],"1/5") :: (TripleSet,TripleSet,String)

tau8 = Triple(Var (EVar "_:who"), URI "authenticated",

 URI "<mailto:w3c-ac-forum@w3.org/>")

tauQ = ([],[tau8],"1/23")

 :: (TripleSet,TripleSet,String)

tauTS = [([],[tau1],"1/2"),([], [tau2],"1/3"),([], [tau3],"1/4"), rulet]

 :: [(TripleSet,TripleSet,String)]

sub1 = (UVar "person", URI "<mailto:jos.deroo.jd@belgium.agfa.com>")

sub2 = (UVar "mailinglist", URI "<mailto:w3c-ac-forum@w3.org/>")

sub3 = (UVar "institution", URI "<http://www.agfa.com>")

subList = [sub1, sub2, sub3]

testTr = [Triple (URI "T$$$1", URI "a", URI "b"), Triple (URI "T$$$1",

 URI "c", URI "d"), Triple (URI "T$$$2", URI "e", URI "f"),

 Triple (URI "T$$$2", URI "g", URI "h")]

module RDFML where

import RDFData

import RDFHash

import RDFGraph

import RDFProlog

import Utils

import ToN3

import Array

-- description of the Mini Languge for RDF Graphs

-- for the Haskell data types see: RDFData.hs

-- triple :: String -> String -> String -> Triple

-- triple s p o : make a triple

-- nil :: Triple

-- nil : get a nil triple

-- tnil :: Triple -> Bool (tnil = test (if triple) nil)

-- tnil : test if a triple is nil

-- s :: Triple -> Resource (s = subject)

-- s t : get the subject of a triple

-- p :: Triple -> Resource (p = predicate)

-- p t : get the predicate of a triple

-- o :: Triple -> Resource (o = object)

-- o t : get the object of a triple

-- st :: TripleSet -> TripleSet -> Statement (st = statement)

-- st ts1 ts2 : make a statement with two triplesets

-- gmpred :: Statement -> String

-- gmpred st: get the main predicate of a statement

-- This is the predicate of the first triple

-- of the consequents

-- stnil :: Statement (stnil = statement nil)

-- stnil : get a nil statement

-- tstnil :: Statement -> Bool (tstnil = test if statement nil)

-- tstnil : test if a statement is nil

-- trule :: Statement -> Bool (trule = test (if) rule)

-- trule st = test if the statement st is a rule

-- tfact :: Statement -> Bool (tfact = test (if) fact)

-- tfact st : test if the statement st is a fact

-- stf :: TripleSet -> TripleSet -> String -> Statement (stf = statement full)

-- stf ts1 ts2 n : make a statement where the Int indicates the specific graph.

-- command 'st' takes as default graph 0

-- protost :: String -> Statement (protost = (RDF)prolog to statement)

-- protost s : transforms a predicate in RDFProlog format to a statement

-- example: "test(a,b,c)."

-- sttopro :: Statement -> String (sttopro = statement to (RDF)prolog)

-- sttopro st : transforms a statement to a predicate in RDFProlog format

-- ants :: Statement -> TripleSet (ants = antecedents)

-- ants st : get the antecedents of a statement

-- cons :: Statement -> TripleSet (cons = consequents)

-- cons st : get the consequents of a statement

-- fact :: Statement -> TripleSet

-- fact st : get the fact = consequents of a statement

-- tvar :: Resource -> Bool (tvar : test variable)

-- tvar r : test whether this resource is a variable

-- tlit :: Resource -> Bool (tlit = test literal)

-- tlit r : test whether this resource is a literal

-- turi :: Resource -> Bool (turi = test uri)

-- turi r : test whether this resource is a uri

-- grs :: Resource -> String (grs = get resource (as) string)

-- grs r : get the string value of this resource

-- gvar :: Resource -> Vare (gvar = get variable)

-- gvar r : get the variable from the resource

-- graph :: TripleSet -> Int -> String -> RDFGraph

-- graph ts n s : make a numbered graph from a triple store.

-- the string indicates the graph type: predicate 'gtype(s)'

-- the graph number is as a string in the predicate:

-- 'gnumber("n")'

-- agraph :: RDFGraph -> Int -> Array Int RDFGraph -> Array Int RDFGraph

-- agraph g n graphs : add a RDF graph to an array of graphs at position

-- n. If the place is occupied by a graph, it will be

-- overwritten. Limited number of entries by parameter maxg.

-- maxg defines the maximum number of graphs

-- maxg :: Int

-- maxg = 5

-- pgraph :: RDFGraph -> String (pgraph = print graph)

-- pgraph : print a RDF graph in RDFProlog format

-- pgraphn3 :: RDFGraph -> String (pgraphn3 = print graph in Notation 3)

-- pgraphn3 : print a RDF graph in Notation 3 format

-- cgraph :: RDFGRaph -> String (cgraph = check graph)

-- cgraph : check a RDF graph. The string contains first the listing of the original triple store in

-- RDF format and then all statements grouped by predicate. The two listings

-- must be identical

-- apred :: RDFGraph -> String -> RDFGraph (apred = add predicate)

-- apred g p : add a predicate of arity (length t). g is the rdfgraph, p is the

-- predicate (with ending dot).

-- astg :: RDFGraph -> Statement -> RDFGraph (astg = add statement to graph)

-- astg g st : add statement st to graph g

-- dstg :: RDFGraph -> Statement -> RDFGraph (dstg = delete statement from graph)

-- dstg g st : delete statement st from the graph g

-- gpred :: RDFGraph -> String -> [Statement] (gpred = get predicate)

-- grped g p : get the list of all statements from graph g with predicate p

-- gpredv :: RDFGraph -> String -> [Statement] (gpredv = get predicate and variable (predicate))

-- gpredv g p : get the list of all statements from graph g with predicate p

-- and with a variable predicate.

-- Implementation of the mini-language --

-- triple :: String -> String -> String -> Triple

-- make a triple from three strings

-- triple s p o : make a triple

nil :: Triple

-- construct a nil triple

nil = TripleNil

tnil :: Triple -> Bool

-- test if a triple is a nil triple

tnil t

 | t == TripleNil = True

 | otherwise = False

s :: Triple -> Resource

-- get the subject of a triple

s t = s1

where Triple (s1,_,_) = t

p :: Triple -> Resource

-- get the predicate from a triple

p t = s1

where Triple (_,s1,_) = t

o :: Triple -> Resource

-- get the object from a triple

o t = s1

where Triple (_,_,s1) = t

st :: TripleSet -> TripleSet -> Statement

-- construct a statement from two triplesets

-- -1 indicates the default graph

st ts1 ts2 = (ts1,ts2,"-1")

gmpred :: Statement -> String

-- get the main predicate of a statement

-- This is the predicate of the first triple of the consequents

gmpred st

 | (cons st) == [] = ""

 | otherwise = pred

 where t = head(cons st)

 pred = grs(p t)

stnil :: Statement

-- return a nil statement

stnil = ([],[],"0")

tstnil :: Statement -> Bool

-- test if the statement is a nil statement

tstnil st

 | st == ([],[],"0") = True

 | otherwise = False

trule :: Statement -> Bool

-- test if the statement is a rule

trule ([],_,_) = False

trule st = True

tfact :: Statement -> Bool

-- test if the statement st is a fact

tfact ([],_,_) = True

tfact st = False

stf :: TripleSet -> TripleSet -> String -> Statement

-- construct a statement where the Int indicates the specific graph.

-- command 'st' takes as default graph 0

stf ts1 ts2 s = (ts1,ts2,s)

protost :: String -> Statement

-- transforms a predicate in RDFProlog format to a statement

-- example: "test(a,b,c)."

protost s = st

 where [(cl,_)] = clause s

 (st, _, _) = transClause (cl, 1, 1, 1)

sttopro :: Statement -> String

-- transforms a statement to a predicate in RDFProlog format

sttopro st = toRDFProlog st

sttppro :: Statement -> String

-- transforms a statement to a predicate in RDFProlog format with

-- provenance indication (after the slash)

sttppro st = sttopro st ++ "/" ++ prov st

ants :: Statement -> TripleSet

-- get the antecedents of a statement

ants (ts,_,_) = ts

cons :: Statement -> TripleSet

-- get the consequents of a statement

cons (_,ts,_) = ts

prov :: Statement -> String

-- get the provenance of a statement

prov (_,_,s) = s

fact :: Statement -> TripleSet

-- get the fact = consequents of a statement

fact (_,ts,_) = ts

tvar :: Resource -> Bool

-- test whether this resource is a variable

tvar (Var v) = True

tvar r = False

tlit :: Resource -> Bool

-- test whether this resource is a literal

tlit (Literal l) = True

tlit r = False

turi :: Resource -> Bool

-- test whether this resource is a uri

turi (URI r) = True

turi r = False

grs :: Resource -> String

-- get the string value of this resource

grs r = getRes r

gvar :: Resource -> Vare

-- get the variable from a resource

gvar (Var v) = v

graph :: TS -> Int -> String -> RDFGraph

-- make a numbered graph from a triple store

-- the string indicates the graph type

-- the predicates 'gtype' and 'gnumber' can be queried

graph ts n s = g4

 where changenr nr (ts1,ts2,_) = (ts1,ts2,intToString nr)

 g1 = getRDFGraph (map (changenr n) ts) s

 g2 = apred g1 ("gtype(" ++ s ++ ").")

 g3@(RDFGraph (array,d,p)) = apred g2 ("gnumber(" ++

 intToString n ++ ").")

 ([],tr,_) = array!1

 array1 = array//[(1,([],tr,intToString n))]

 g4 = RDFGraph (array1,d,p)

agraph :: RDFGraph -> Int -> Array Int RDFGraph -> Array Int RDFGraph

-- add a RDF graph to an array of graphs at position n.

-- If the place is occupied by a graph, it will be overwritten.

-- Limited to 5 graphs at the moment.

agraph g n graphs = graphs//[(n,g)]

-- maxg defines the maximum number of graphs

maxg :: Int

maxg = 3

statg :: RDFGraph -> TS

-- get all statements from a graph

statg g = fromRDFGraph g

pgraph :: RDFGraph -> String

-- print a RDF graph in RDFProlog format

pgraph g = tsToRDFProlog (fromRDFGraph g)

pgraphn3 :: RDFGraph -> String

-- print a RDF graph in Notation 3 format

pgraphn3 g = tsToN3 (fromRDFGraph g)

cgraph :: RDFGraph -> String

-- check a RDF graph. The string contains first the listing of the original triple

-- store in RDF format and then all statements grouped by predicate. The two listings

-- must be identical

cgraph g = checkGraph g

apred :: RDFGraph -> String -> RDFGraph

-- add a predicate of arity (length t). g is the rdfgraph, p is the

-- predicate (with ending dot).

apred g p = astg g st

 where st = protost p

astg :: RDFGraph -> Statement -> RDFGraph

-- add statement st to graph g

astg g st = putStatementInGraph g st

dstg :: RDFGraph -> Statement -> RDFGraph

-- delete statement st from the graph g

dstg g st = delStFromGraph g st

gpred :: RDFGraph -> Resource -> [Statement]

-- get the list of all statements from graph g with predicate p

gpred g p = readPropertySet g p

gpvar :: RDFGraph -> [Statement]

-- get the list of all statements from graph g with a variable predicate

gpvar g = getVariablePredicates g

gpredv :: RDFGraph -> Resource ->[Statement]

-- get the list of all statements from graph g with predicate p

-- and with a variable predicate.

gpredv g p = gpred g p ++ gpvar g

checkst :: RDFGraph -> Statement -> Bool

-- check if the statement st is in the graph

checkst g st

 | f == [] = False

 | otherwise= True

 where list = gpred g (p (head (cons st)))

 f = [st1|st1 <- list, st1 == st]

changest :: RDFGraph -> Statement -> Statement -> RDFGraph

-- change the value of a statement to another statement

changest g st1 st2 = g2

 where list = gpred g (p (head (cons st1)))

 (f:fs) = [st|st <- list, st == st1]

 g1 = dstg g f

 g2 = astg g st2

setparam :: RDFGraph -> String -> RDFGraph

-- set a parameter. The parameter is in RDFProlog format (ending dot

-- included.) . The predicate has only one term.

setparam g param

 | fl == [] = astg g st

 | otherwise = changest g f st

 where st = protost param

 fl = checkparam g param

 (f:fs) = fl

getparam :: RDFGraph -> String -> String

-- get a parameter. The parameter is in RDFProlog format.

-- returns the value of the parameter.

getparam g param

 | fl == [] = ""

 | otherwise = grs (o (head (cons f)))

 where st = protost param

 fl = checkparam g param

 (f:fs) = fl

checkparam :: RDFGraph -> String -> [Statement]

-- check if a parameter is already defined in the graph

checkparam g param

 | ll == [] = []

 | otherwise = [l1]

 where st = protost param

 list = gpred g (p (head (cons st)))

 ll = [l|l <-list, length (cons l) == 1]

 (l1:ll1) = ll

assert :: RDFGraph -> Statement -> RDFGraph

-- assert a statement

assert g st = astg g st

retract :: RDFGraph -> Statement -> RDFGraph

-- retract a statement

retract g st = dstg g st

asspred :: RDFGraph -> String -> RDFGraph

-- assert a predicate

asspred g p = assert g (protost p)

retpred :: RDFGraph -> String -> RDFGraph

-- retract a statement

retpred g p = retract g (protost p)

module ToN3 where

import "Utils"

--import "XML"

--import "N3Parser"

--import "Array"

--import "LoadTree"

import "RDFData"

import "Observe"

--import "GenerateDB"

-- Author: G.Naudts. Mail: naudts_vannoten@yahoo.com.

substToN3 :: ElemSubst -> String

substToN3 (vare, res) = resourceToN3 (Var vare) ++ " = " ++

 resourceToN3 res ++ "."

-- the substitutionList is returned as an

substListToN3 :: Subst -> String

substListToN3 [] = ""

substListToN3 sl = "{" ++ substListToN3H sl ++ "}."

 where substListToN3H [] = ""

 substListToN3H (x:xs) = substToN3 x ++ " " ++ substListToN3H xs

substListListToN3 [] = ""

substListListToN3 (x:xs) = substListToN3 x ++ substListListToN3 xs

testTSToN3 = tsToN3 tauTS

tsToN3 :: [Statement] -> String

tsToN3 [] = ""

tsToN3 (x:xs) = statementToN3 x ++ "\n" ++ tsToN3 xs

testTripleToN3 = tripleToN3 tau7

tripleToN3 :: Triple -> String

tripleToN3 (Triple (s, p, o)) = resourceToN3 s ++ " " ++ resourceToN3 p

 ++ " " ++ resourceToN3 o ++ "."

tripleToN3 TripleNil = " TripleNil "

tripleToN3 t = ""

resourceToN3 :: Resource -> String

resourceToN3 ResNil = "ResNil "

resourceToN3 (URI s) = s1

 where (bool, s1, r) = parseUntil ' ' s

resourceToN3 (Literal s) = "\"" ++ r ++ "\""

 where (bool, s1, r) = parseUntil ' ' s

resourceToN3 (TripleSet t) = tripleSetToN3 t

resourceToN3 (Var v) = s1

 where getS (Var (UVar s)) = s

 getS (Var (EVar s)) = s

 getS (Var (GEVar s)) = s

 getS (Var (GVar s)) = s

 s = getS (Var v)

 (bool, s1, r) = parseUntil ' ' s

resourceToN3 r = ""

tripleSetToN3 :: [Triple] -> String

tripleSetToN3 [] = ""

tripleSetToN3 ts = "{" ++ tripleSetToN3H ts ++ "}."

 where tripleSetToN3H [] = ""

 tripleSetToN3H (x:xs) = tripleToN3 x ++ " " ++ tripleSetToN3H xs

 tripleSetToN3H _ = ""

statementToN3 :: ([Triple],[Triple],String) -> String

statementToN3 ([],[],_) = ""

statementToN3 ([],ts,_) = tripleSetToN3 ts

statementToN3 (ts1,ts2,_) = "{" ++ tripleSetToN3 ts1 ++ "}log:implies{" ++

 tripleSetToN3 ts2 ++ "}."

module InfData where

import RDFData

import RDFGraph

import Array

import RDFML

data InfData = Inf {graphs::Array Int RDFGraph, goals::Goals, stack::Stack,

 lev::Level, pdata::PathData, subst::Subst,

 sols::[Solution], ml::MatchList}

 deriving (Show,Eq)

type Goals = [Statement]

data StackEntry = StE {sub::Subst, fs::FactSet, sml::MatchList}

 deriving (Show,Eq)

type Stack = [StackEntry]

type Level = Int

data PDE = PDE {pbs::BackStep, plev::Level}

 deriving (Show,Eq)

type PathData = [PDE]

-- type ElemSubst = (Vare,Resource)

-- type Subst = [ElemSubst]

data Match = Match {msub::Subst, mgls::Goals, bs::BackStep}

 deriving (Show,Eq)

type BackStep = (Statement, Statement)

type MatchList = [Match]

data Solution = Sol {ssub::Subst, cl::Closure}

 deriving (Show,Eq)

type Closure = [ForStep]

type ForStep = (Statement, Statement)

setparamInf :: InfData -> String -> InfData

-- set a parameter in an InfData structure

setparamInf inf param = inf1

 where gs = graphs inf

 g1 = setparam (gs!1) param

 grs = gs//[(1,g1)]

 inf1 = inf{graphs=grs}

delparamInf :: InfData -> String -> InfData

-- delete a parameter in an InfData structure

delparamInf inf param = inf1

 where gs = graphs inf

 g1 = dstg (gs!1) (protost param)

 grs = gs//[(1,g1)]

 inf1 = inf{graphs=grs}

getparamInf :: InfData -> String -> String

-- set a parameter in an InfData structure

getparamInf inf param = pval

 where gs = graphs inf

 pval = getparam (gs!1) param

-- display functions for testing and showing results

-- type InfData = (Array Int RDFGraph,Goals,Stack,Level,

-- PathData,Subst,[Solution],MatchList,Trace)

--showinf =

-- shortinf does not show the graphs

-- shortinf =

-- showgs does a check on the graphs

showgs inf = map cgraph inf

--showgraphs inf = map showg (graphs inf)

-- where showg g = "Graph:\n" ++ concat(map sttopro (fromRDFGraph g)) ++ "\n"

-- data InfData = Inf {graphs::Array Int RDFGraph, goals::Goals, stack::Stack,

-- lev::Level, pdata::PathData, subst::Subst,

-- sols::[Solution], ml::MatchList}

-- type Goals = [Statement]

sgoals goals = out

 where list = map sttppro goals

 out = concat [s ++ "\n"|s <- list]

-- data PDE = PDE {pbs::BackStep, plev::Level}

-- deriving (Show,Eq)

-- type PathData = [PDE]

showpd pd = concat (map showPDE pd)

 where showPDE pde = showbs (pbs pde)

-- show a backstep

showbs (st1,st2) = "(" ++ sttppro st1 ++ "," ++ sttppro st2 ++ ")\n"

-- a backstep is a tuple (Fact,Statement)

-- it is a history of a successfull unification

-- type BackStep = (Statement, Statement)

-- data Solution = Sol {ssub::Subst, cl::Closure}

-- deriving (Show,Eq)

-- show a solution

ssol sol = "Solution:\nSubstitution:\n" ++ ssubst (ssub sol)

 ++ "\nClosure:\n" ++ concat (map showbs (cl sol)) ++ "\n"

-- show a solution list

ssols sols = foldl (++) "" (map ssol sols)

-- a match is a triple (Subst, Goals, BackStep)

-- type Match = (Subst, Goals, BackStep)

-- type MatchList = [Match]

-- show an elementary substitution

sesub (r1,r2) = "(" ++ grs (Var r1) ++ "," ++ grs r2 ++ ")"

-- show a substitution

ssubst subst = "[" ++ ssubstH subst ++ "]\n"

 where ssubstH subst = concat (map sesub subst)

module InfML where

import RDFData

import RDFUnify

import InfData

-- Description of the Mini Language for inferencing

-- For the Haskell data types: see RDFData.hs

-- esub :: Vare -> Resource -> ElemSubst (esub = elementary substitution)

-- esub v t : define an elementary substitution

-- apps :: Subst -> Statement -> Statement (apps = apply susbtitution)

-- apps s st : apply a susbtitution to a statement

-- appst :: Subst -> Triple -> Triple (appst = apply substitution (to) triple)

-- appst s t : apply a substitution to a triple

-- appsts :: Substitution -> TripleSet (appsts = apply substitution (to) tripleset)

-- appsts s ts : apply a substitution to a tripleset

-- unifsts :: Statement -> Statement -> Maybe Match (unifsts = unify statements)

-- unifsts st1 st2 : unify two statements giving a match

-- a match is composed of: a substitution,

-- the returned goals or [], and a backstep.

-- gbstep :: Match -> BackStep (gbstep = get backwards (reasoning) step

-- gbstep m : get the backwards reasoning step (backstep) associated with a match.

-- a backstep is composed of statement1 and statement 2 of the match (see unifsts)

-- convbl :: [BackStep] -> Substitution -> Closure (convbl = convert a backstep list)

-- convbl bl sub : convert a list of backsteps to a closure using the substitution sub

-- gls :: Match -> [Statement] (gls = goals)

-- gls : get the goals associated with a match

-- gsub :: Match -> Substitution (gsub = get substitution)

-- gsub m : get the substitution from a match

-- Implementation --

esub :: Vare -> Resource -> ElemSubst

-- define an elementary substitution

esub v t = (v,t)

apps :: Subst -> Statement -> Statement

-- apply a susbtitution to a statement

apps s st = appSubst s st

appst :: Subst -> Triple -> Triple

-- apply a substitution to a triple

appst [] t = t

appst (s:ss) t = appst ss (appESubstT s t)

appsts :: Subst -> [Statement] -> [Statement]

-- apply a substitution to a triple store

appsts s ts = appSubstTS s ts

unifsts :: Statement -> Statement -> Maybe Match

-- unify two statements giving a match.

-- a match is composed of: statement1, statement2, the resulting new goals

-- or [] and a substitution.

unifsts st1 st2 = unify st1 st2

convbl :: [BackStep] -> Subst -> Closure

-- convert a list of backsteps to a closure using the substitution sub

convbl bsl sub = asubst fcl

where fcl = reverse bsl

 asubst [] = []

 asubst ((st1,st2):cs) = (appSubst sub st1, appSubst sub st2):

 asubst cs

module Utils where

import "IO"

-- Utilities for the N3 parser

-- Author: G.Naudts. Mail: naudts_vannoten@yahoo.com.

-- delimiter string

delimNode = [' ','.',';', ']', '=','\n', '\r',',','}']

--

-- see if a character is present in a string

checkCharacter :: Char -> String -> Bool

checkCharacter c "" = False

checkCharacter c (x:xs)

 | x == c = True

 | otherwise = checkCharacter c xs

-- takec a b will parse character a from string b

-- and returns (True, b-a) or (False, b)

takec :: Char -> String -> (Bool, String)

takec a "" = (False, "")

takec a (x:xs)

 | x == a = (True, xs)

 | otherwise = (False, x:xs)

-- parseUntil a b will take from string b until char a is met

-- and returns (True c b-c) where c is the part of b before a with

-- a not included or it returns (False "" b)

parseUntil :: Char -> String -> (Bool, String, String)

parseUntil c "" = (False, "", "")

parseUntil c s

 | bool == False = (False, "", s)

 | otherwise = (True, s1, s2)

 where (bool, c1, s1, s2) = parseUntilHelp (False, c, "", s)

-- help function for parseUntil

parseUntilHelp :: (Bool, Char, String, String) ->

 (Bool, Char, String, String)

parseUntilHelp (bool, c, s1, "") = (bool, c, s1, "")

parseUntilHelp (bool, c, s1, (x:xs))

 | x /= c = parseUntilHelp (False, c, s1 ++ [x], xs)

 | otherwise = (True, c, s1, xs)

-- parseUntilDelim delim input will take a list with delimiters and parse the

-- input string till one of the delimiters is found .

-- It returns (True c input-c) where c is the parsed string without the

-- delimiter or it

-- returns (False "" input) if no result

parseUntilDelim :: String -> String -> (Bool, String, String)

parseUntilDelim delim "" = (False, "", "")

parseUntilDelim delim s =

 parseUntilDelimHelp delim "" s

-- This is a help function

-- must be called with s = ""

parseUntilDelimHelp :: String -> String -> String -> (Bool, String, String)

parseUntilDelimHelp delim s "" = (False, s, "")

parseUntilDelimHelp delim s (x:xs)

 |elem x delim = (True, s, (x:xs))

 |otherwise = parseUntilDelimHelp delim (s ++ [x]) xs

-- parseUntilString (s1, s2) will parse string s1 until string s2 is met.

-- True or False is returned; the parsed string and the rest string with

-- s2 still included.

parseUntilString "" s2 = (False, "", s2)

parseUntilString s1 "" = (False, s1, "")

parseUntilString s1 s2@(x:xs)

 |bv1 && bool = (True, first, x:rest)

 |not bool = (False, s1, s2)

 |otherwise = (bool1, first ++ [x] ++ first1, rest1)

 where (bool, first, rest) = parseUntil x s1

 bv1 = startsWith rest xs

 (bool1, first1, rest1) = parseUntilString rest s2

-- skipTillCharacter skip the input string till the character is met .

-- The rest of the string is returned without the character

skipTillCharacter :: Char -> String -> String

skipTillCharacter _ "" = ""

skipTillCharacter c (x:xs)

 | x == c = xs

 | otherwise = skipTillCharacter c xs

-- test if the following character is a blanc

testBlancs :: Char -> Bool

testBlancs x

 | x == ' ' || x == '\n' || x == '\r' || x == '\t'= True

 |otherwise = False

-- skips the blancs in a string and returns the stripped string

skipBlancs :: String -> String

skipBlancs "" = ""

skipBlancs s@(x:xs)

 -- comment

 | x == '#' = parseComment s

 | x == ' ' || x == '\n' || x == '\r' || x == '\t' = skipBlancs xs

 |otherwise = s

-- skips the blancs but no comment in a string and returns

--the stripped string

skipBlancs1 :: String -> String

skipBlancs1 "" = ""

skipBlancs1 s@(x:xs)

 | x == ' ' || x == '\n' || x == '\r' = skipBlancs1 xs

 |otherwise = s

-- function for parsing comment

-- input is string to be parsed

-- the comment goes till "\r\n" is encountered

-- returns a string with the comment striped off

parseComment :: String -> String

parseComment "" = ""

parseComment s

 | bv1 && bv2 = skipBlancs post2

 | otherwise = "Error parsing comment" ++ s

 where (bv1, post1) = takec '#' s

 (bv2, comment, post2) = parseUntil '\n' post1

-- global data

-- The global data are a list of tuples (Id, Value)

-- Those values are extracted by means of the id and two functions :

-- getIntParam and getStringParam

-- The values are changed by two functions :

-- setIntParam and setStringParam

type Globals = [(String,String)]

-- Parser data . This is a triple that contains:

-- * the global data

-- * the accumulated parse results in string form

-- * the rest string

type ParserData = (Globals, String, String, Int)

-- get an integer parameter from a global list

getIntParam :: Globals -> String -> Int

getIntParam g "" = -30000

getIntParam [] _ = -30000

getIntParam (x:xs) s

 |fst x == s = stringToInt (snd x)

 |otherwise = getIntParam xs s

-- set an integer parameter in a global list

setIntParam :: Globals -> String -> Int -> Globals

setIntParam [] _ _ = []

setIntParam g "" _ = g

setIntParam g s i = (takeWhile p g) ++ [(s, intToString i)]

 ++ ys

 where p = (\(ind, v) -> not (ind == s))

 (y:ys) = dropWhile p g

-- get an string parameter from a global list

getStringParam :: Globals -> String -> String

getStringParam g "" = ""

getStringParam [] _ = "Error get parameter "

getStringParam (x:xs) s

 |fst x == s = snd x

 |otherwise = getStringParam xs s

-- set an string parameter in a global list

setStringParam :: Globals -> String -> String -> Globals

setStringParam [] s s' = [(s, s')]

setStringParam g "" _ = g

setStringParam (x:xs) s s'

 | fst x == s = [(s, s')] ++ xs

 | otherwise = x:setStringParam xs s s'

-- transform a string to an int

stringToInt = mult

 .reverse

 .toIntM

 where mult [] = 0

 mult (x:xs) = x + 10*(mult xs)

-- transform a string to ciphers in reverse sequence

toIntM [] = []

toIntM (x:xs) = [ord(x)-ord('0')] ++ toIntM xs

testIntToString =

 [intToString n|n <- [500..1500]]

-- transform an int to a string

intToString :: Int -> String

intToString i

 | i < 10 = [chr (ord '0' + i)]

 |otherwise = intToString (i `div` 10) ++ [chr(ord '0' + i`mod`10)]

-- startsWith looks if a string starts with a certain chain

-- the second parameter is the starting string

startsWith :: String -> String -> Bool

startsWith "" "" = True

startsWith "" s = False

startsWith s "" = True

startsWith (x:xs) (y:ys)

 | x == y = startsWith xs ys

 | otherwise = False

-- containsString test whether the first string is contained in the

-- second string.

containsString :: String -> String -> Bool

containsString [] s = True

containsString s [] = False

containsString (x:xs) (y:ys)

 | x == y = containsString xs ys

 | otherwise = containsString (x:xs) ys

testContainsString = containsString us2 us1

-- parseString a b will parse string a from string b

-- and returns (True, b-a) or (False,b)

parseString :: String -> String -> (Bool, String)

parseString a b

 | s == a = (True, c)

 | otherwise = (False, b)

 where s = take (length a) b

 c = drop (length a) b

-- save a string to a file of which the name is indicated

-- by the second string

-- stringToFile :: (String, String) -> IO

stringToFile s fileName = do toHandle <- openFile fileName WriteMode

 hPutStr toHandle s

 hClose toHandle

 putStr "Done."

-- open a file for reading

openRead fileName = openFile fileName ReadMode

-- close a file

closeFile fileHandle = hClose fileHandle

-- read a complete file

readFileContents fromHandle = hGetContents fromHandle

-- eliminates doubles in a list

eliminateDoubles :: Eq a => [a] -> [a]

eliminateDoubles [] = []

eliminateDoubles (x:xs)

 | isIn xs x = eliminateDoubles xs

 | otherwise = x:eliminateDoubles xs

eliminateEmptiesL [] = []

eliminateEmptiesL (x:xs)

 |x == [] = eliminateEmptiesL xs

 |otherwise = x:eliminateEmptiesL xs

testEliminateDoubles = eliminateDoubles list

-- check whether an element is in a list

isIn :: Eq a => [a] -> a -> Bool

isIn [] y = False

isIn (x:xs) y

 | x == y = True

 | otherwise = isIn xs y

-- get elements of a triple

fstTriple (a, b, c) = a

sndTriple (a, b, c) = b

thdTriple (a, b, c) = c

-- test data

us1 = "this is a test"

us2 = "is"

list = ['a', 'b', 'c', 'a', 'd', 'c', 'a', 'f', 'b']

-- Combinator parsing library:

--

-- The original Gofer version of this file was based on Richard Bird's

-- parselib.orw for Orwell (with a number of extensions).

--

-- Not recommended for new work.

--

-- Suitable for use with Hugs 98.

module CombParse where

infixr 6 `pseq`

infixl 5 `pam`

infixr 4 `orelse`

--- Type definition:

type Parser a = [Char] -> [(a,[Char])]

-- A parser is a function which maps an input stream of characters into

-- a list of pairs each containing a parsed value and the remainder of the

-- unused input stream. This approach allows us to use the list of

-- successes technique to detect errors (i.e. empty list ==> syntax error).

-- it also permits the use of ambiguous grammars in which there may be more

-- than one valid parse of an input string.

--- Primitive parsers:

-- pfail is a parser which always fails.

-- okay v is a parser which always succeeds without consuming any characters

-- from the input string, with parsed value v.

-- tok w is a parser which succeeds if the input stream begins with the

-- string (token) w, returning the matching string and the following

-- input. If the input does not begin with w then the parser fails.

-- sat p is a parser which succeeds with value c if c is the first input

-- character and c satisfies the predicate p.

pfail :: Parser a

pfail is = []

okay :: a -> Parser a

okay v is = [(v,is)]

tok :: [Char] -> Parser [Char]

tok w is = [(w, drop n is) | w == take n is]

 where n = length w

sat :: (Char -> Bool) -> Parser Char

sat p [] = []

sat p (c:is) = [(c,is) | p c]

--- Parser combinators:

-- p1 `orelse` p2 is a parser which returns all possible parses of the input

-- string, first using the parser p1, then using parser p2.

-- p1 `seq` p2 is a parser which returns pairs of values (v1,v2) where

-- v1 is the result of parsing the input string using p1 and

-- v2 is the result of parsing the remaining input using p2.

-- p `pam` f is a parser which behaves like the parser p, but returns

-- the value f v wherever p would have returned the value v.

--

-- just p is a parser which behaves like the parser p, but rejects any

-- parses in which the remaining input string is not blank.

-- sp p behaves like the parser p, but ignores leading spaces.

-- sptok w behaves like the parser tok w, but ignores leading spaces.

--

-- many p returns a list of values, each parsed using the parser p.

-- many1 p parses a non-empty list of values, each parsed using p.

-- listOf p s parses a list of input values using the parser p, with

-- separators parsed using the parser s.

orelse :: Parser a -> Parser a -> Parser a

(p1 `orelse` p2) is = p1 is ++ p2 is

pseq :: Parser a -> Parser b -> Parser (a,b)

(p1 `pseq` p2) is = [((v1,v2),is2) | (v1,is1) <- p1 is, (v2,is2) <- p2 is1]

pam :: Parser a -> (a -> b) -> Parser b

(p `pam` f) is = [(f v, is1) | (v,is1) <- p is]

just :: Parser a -> Parser a

just p is = [(v,"") | (v,is')<- p is, dropWhile (' '==) is' == ""]

sp :: Parser a -> Parser a

sp p = p . dropWhile (' '==)

sptok :: [Char] -> Parser [Char]

sptok = sp . tok

many :: Parser a -> Parser [a]

many p = q

 where q = ((p `pseq` q) `pam` makeList) `orelse` (okay [])

many1 :: Parser a -> Parser [a]

many1 p = p `pseq` many p `pam` makeList

listOf :: Parser a -> Parser b -> Parser [a]

listOf p s = p `pseq` many (s `pseq` p) `pam` nonempty

 `orelse` okay []

 where nonempty (x,xs) = x:(map snd xs)

--- Internals:

makeList :: (a,[a]) -> [a]

makeList (x,xs) = x:xs

� EMBED Word.Picture.8 ���

PAGE
56

[image: image23.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

_1091531685.ppt

RDF Graph

has the creator

Resource

Property Type

Property Value

http://www.jsbach.org

Jan Hanford

_1107425040.doc
[image: image1.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

