Roadmap to the semantic web

The client of user a needs data from a travel agency. How can it get it? He needs instructions that enable him to contact a travel agency. This implies that there is a standard name for travel agencies. This name is fournished by the “Web Services Ontology”.

So the client could send something like:

?who web_services:service web_services:travel_agent. using the standard web services ontology.

This query returns a list traveler services still in the web services ontology. This data sent might contain a rules part e.g. for displaying a menu to the user.

The following standards are already supposed here:

RDF, a standard rules language, a standard ontology language = OWL + its extensions(a standard web services ontology) and, last but not least, standard actions (like “display on screen” or “send a query”).

A query is sent using a basic ontology (might be “the universal core”) (another standard). The response uses also OWL, Universal core, rules language and an OWL extension specifically designed for travel agencies. The response contains an answer to the query but also the possible rules that permit (or instruct) the agent of the user to contact further services like the different railway entities or flight companies. So the client of the user does not need to interpret itself the ontology of the travel agency; the necessary rules and travel_agency_ontology are sent to him (or queries and answers are sent back and forth over the internet depending on what is most efficient or practical).

Of the necessary standards RDF and OWL exist now.

Efficiency of inference implementation

Whenseeking to unify a goal it is possible to take every clause of the database and see whether a match is possible. This clearly is not efficient. Better is make a dictionary of all atoms and the number of the clausel that contain those atoms. Then before unification a list of possible clauses is retrieved from the dictionary (who contains also the address of the clauses) and the unification is done. It is also possible to put the clauses in a relational database.

Introducing programming language features in Notation 3:

The case study about the travel agent shows that the inference engine has a complex task to accomplish: determining paths and scheduling itineraries. Though, no doubt, a lot can be accomplished using facts and rule sets, the existence of programming language features could be a great asset.

An hypothetical example: a number n has to be multiplied 5 times by a number n1. This gives us a function with two variables. A function (or procedure) will be called with a query. The result returned will be a substitution. (Also possible should be to return a fact that is added to the database).

The definition of the procedure:

{:procedure :definition :multiply_5_times.

 :params = ?p1, ?p2, ?p3.

?p3 is the(a) return parameter.

?temp :assign “5”.

:while {?temp math:greater “0”} {

 ?p1 = {?p1 math:multiply ?p2}.

 ?temp = {?temp math:subtract “1”}.

}.

?p3 :substitution ?p1.

} # end of procedure :multiply_5_times

The query:

{:procedure :query :multiply_5_times.

 : params = “6”, “7”, ?r}.

Of course all this has to be interpreted by the inference engine.

The result should be: 6*7*7*7*7*7.

The translation from Haskell to SWeLL

Take the following Haskell function:

test (a,b)

 | a > c = b

 | b > c = a

 where c = b - a

Each item of the case statement is translated to a separate rule in SWeLL. The declarations after the where keyword are just facts in the SWeLL rule.

{this log:forAll :a,:b,:c.

:c math:diff :b, :a..

{:a math:greater :c.} log:implies {:b :test :a, :b}.

{:b math:greater :c} log:implies {:a :test :a, :b}}.

and the function is called with:

_:what :test "5", "4". in a query or in a rule:

{:what :test “5”, “4”. :what math:equal “5”.}log:implies {:whatever :is :whatever}; log:forAll :what.

which would give two solutions:

"5" and "4".

The difference with Haskell is that Haskell gives only one solution: the case item are executed sequentially and the first match is returned. It should not be too difficult to instruct the engine to keep only the first solution...

Or in Prolog:

MathDiff(b,a,c).

Test(a,b,b) :- MathGreater(a,c).

Test(a,b,a) :- MathGreater(b,c).

With query:

Test(a,b,X).

This can be done with functions (or procedures) written in whatever language e.g. the same example in Python:

def test(a,b):

c = b-a

if a > c:

return b

elif b > c:

return a

with of course the same result in Notation 3.

As complete complex programs can be written with functions in this style (see the Haskell modules of this thesis) this can be seen as a general way to write programs in Notation 3.

N-ary predicates

A triple like :s :p :v. could be interpreted like a binary predicate: :p(:s, :v)

Or like a ternary predicate like Triple(:s, :p, :v). The form :p(:s, :v) is not really completely equivalent to :s :p :v. as the predicate :p acquires a special status and is not anymore on the same level as :s and :v. However following the rdf specification the property or predicate really has a special status. So for the sake of this discussion the form :p(:s, :v) will be used.

:p(:s, :v) then represents a binary predicate. How about a unary predicate (like not). This is simple: [:not :a] is the negation of :a. Now this really is a triple with an anonymous subject. The N3Engine transforms this to something like: _T$$$1 :not :a. The _T$$$1 is treated as an existential variable when in a query and as grounded term when in an axiom-file (the reasons for this are explained elsewhere in this thesis.).

How about a null-ary predicate (or a fact) like e.g. Venus. [:Venus _T$$$1] could do. Is this a needed thing? Probably not.

A ternary predicate could be put this way:

[:p :o1, :o2, :o3]. The N3Engine transforms this to:

_T$$$1 :p :o1.

_T$$$1 :p :o2.

_T$$$1 :p :o3.

This works because the unit of unification in N3Engine is a tripleset and the two triples stay together within the tripleset.Take the unary predicates [:p :o1], [:p :o2] and [:p :o3]. This will reduce to:

_T$$$1 :p :o1.

_T$$$2 :p :o2.

_T$$$3 :p :o3.

thus not giving the same result as [:p :o1, :o2]. Take as an example:

[:house :price, :size, :color] as a ternary predicate and [:house :location] as an unary predicate and the facts:

[:house “10000”, “100”, “yellow”].

[:house “Brussels”].

and the query:

[:house ?a, ?b, ?c].

This query will only match with [:house “10000”, “100”, “yellow”] because unification is done on the level of triplesets.

However the query:

[:house ?a] will give two answers:

[:house “10000”] and [:house “Brussels”] a rather confusing result.

So what? Don’t give the same name to predicates of different arities.

Global, local, existential and universal variables

Reflexion API

An application of owl

Whenever a user saves a bookmark a browser could ask to give this book mark a classification. The user enters something and this classification then is entered in a user database in rdf-format and using owl classification .

On looping problems

Two mechanisms for avoiding looping have been built into the engine:

1) When a goal generates alternatives a check is done whether any of the alternatives after substitution return the original goal. This alternative is discarded.

2) A list of goals is kept. Whenever a solution is found this list of goals is emptied. When a goal is presenting itself for the second time a backtrack is done to the level of the first occurrence of this goal. As the original goal does no longer exist one of the alternatives of the original goal will be chosen as the new goal.

The dictionary

When a goal is matched against the database a search is done against all clauses of the database. Suppose the database contains 2000 clauses but only 20 clauses can really unify with the goal. Then 1980 clauses are being tried to match for nothing. So a dictionary is made of atoms and the clause list where the atom can be found. A list of the atoms of the goal is made and then all clauses that contain these atoms are searched in the dictionary.

Some clauses match with every goal: they should always be included.

A refinement: in the dictionary is made a difference between an occurrence as subject, property or verb.

This also permits a further optimisation: the alternatives are ordered before the unification and well in descending order of the number of grounded atoms they contain. In this way loop provoking unifications with general rule (like the one about owl:transitiveProperty) that contain only variables or one atom in the consequent, can be avoided. Besides that if the goals is grounded it will sooner disappear from the goallist.

1
5

