Resolution based inference engines

Introduction:

The resolution method was invented in 1965 by J.Allen Robinson. In 1972 Prolog was developed by Alain Comerauer. Prolog uses a subset of FOL (First Order Logic) but resolution engines for full first order logic exist (e.g. Otter). Resolution is a method for proof finding in logic. Given a set of facts and axioms the resolution mechanism finds a proof of a lemma. The mechanism is complete for FOL i.e. given a lemma the resolution method will deduce its validity or invalidity. 

Logical principles 
[LOGPRINC]

A theory is decidable iff there is an algorithm which can determine whether or not any sentence r is a member of the theory. If a theory is undecidable it is not in general possible to decide whether a sentence r is valid or not. Semi-decidable means that if a proof can be found evntually it will be found (but after how much time?) but if a proof can not be found there might be no answer (the algorithm can loop). 

Gödels completeness theorem:

If T is a set of axioms in a first-order language, and a statement p holds for any structure M satisfying T, then p can be formally deduced from T in some appropriately defined fashion. This amounts to saying that FOL is semi-decidable. 

The absence of contradiction (i.e., the ability to prove that a statement and its negative are both true) in an axiomatic system is known as consistency. 

Gödels incompleteness theorem:

Gödel's incompleteness theorem states that all consistent axiomatic formulations of number theory include undecidable propositions. Another formulation: any formal system that is interesting enough to formulate its own consistency can prove its own consistency iff it is inconsistent. 

Validity: a set of statements is valid if, for any possible model,  it does not contain a contradiction.

Completeness: a logic system is complete if, when  a statement is true, it can be proven to be true.

Soundness: a logic system is sound whenever a statement is proven, this statement is also true (semantically).

Decidability, validity, completeness and soundness are all notions reposing on the semantic interpretation of the system e.g. if an algorithm is not sound, it must be proven that certain results of it are not true which can only be stated semantically. 

An interpretation of FOL (informally) maps a constant to an element of a domain, a predicate to the values {true, false} and a function to an element of the doamin. An example is given for the interpretation of formulas:

I(a and b) = I(a) and I(b).

A model of a set of formulas is an interpretation that makes every wwf in the set true. 

If an interpretation makes each wff (well formed formula) of a set of wwf have the value true, then we say that this interpretation satisfies the set of wffs. A wff T logically follows from a set of wffs A, if every interpretation satisfying A also satisfies T. 

A logic system has the property of monotonicity if the addition of new wwfs does not change the truth value of previous derivations. 

Mechanism

This is in its simplest form the resolution rule:

  A v B

~A v C

=======

  B v C

In order to use this mechanism FOL statements are reduced to clause normal form with the following algorithm. 

Clause form – algorithm[CENG]:

1) Eliminate the implication signs (A ( B becomes (not A) v B)

2) Reduce the scope of the negation signs ((not A ^ B) becomes (not A v not B) etc...)

3) Standardize the variables: rename variables so that each quantifier has its own variable.

4) Eliminate the existential quantifiers by replacing the variables they control by constants or skolem functions  ( ForAll y forSome x P(x,y) becomes forAll y p(g(y), y)) .

5) Convert to prenex form by placing all the universal quantifiers at the beginning (which can be done by virtue of the renaming in point 3). The list of quantifiers at the beginning is called the prefix; the rest of the formula is called the matrix.

6) Put the matrix in conjunctive normal form i.e. as a series of conjunctions (use A v (B ^ C) = (A v B) ^ (A v C)

7) Eliminate the universal quantifiers; all variables are now bound universally.

8) Eliminate the conjunctions obtaining a set of disjunctions (clauses). 

In skolemnization all existential variables are replaced by a function of the universal variable in whose scope they are. Thus in the example higher x is replaced by g(y). Such replacement is always possible, as in a model, for each value of y from the domain D  will correspond a value of x. 

In notation 3 exists a conjunction of triples. Take following n3 database:

:a :b :c.

:f :g :h.

{{:a :x :c. :f :g :h} log:implies {:d :y :z}} log:forAll :x, :y; log:forSome :z.

In prolog this could be:

Triple(a, b, c).

Triple(f, g, h).

Triple(d, Y, Z) :- Triple(a,X,c), Triple(f, g, h).

This is automatically in clause normal form. But what about: log:forSome :z? Must this existential variable not be skolemized? 

Let’s translate this to first order logic:

forAll  X: Triple(a,X,c) and Triple(f,g,h) ( forAll Y forSome Z Triple(d,Y,Z). What does Triple(d,Y,Z) really mean? It emans that there is an element of the domain d that whenever it has a property Y there is at least one element of the domain that is a value for that property. What does the inference engine do? It searches values that satisfy Triple(d,Y,Z). If one value is found for Z ok, if two values are found, ok, etc.. In fact the log:forSome can just be ignored and treated as log:forAll because anyhow the search is for values that satisfy the relations and not necessary all values. In fact the log:forAll is treated as a log:forSome if not all solutions are given. 

This transformation into Clause Normal Form is always possible for first order logic. 

The Herbrand Universe is a general interpretation of a set of clauses from which any other interpretation can be derived. If H(W) is the Herbrand Universe of the set of clauses W then:

· all the constant letters appearing in W are in H(W). If there are no constant letters in W, one allows an arbitrary constant letter to be in H(W).

· If t1, t2, ...,tn in H(W), then f(i,n)(t1,t2,...,tn) in H(W) with f(i,n) a function letter appearing in W.

· No other elements are in W

Example: database: 

Jim, brother_of(X), Wise(X), Taller(X,Y).

 The Herbrand universe is:

Jim, brother_of(Jim), brother_of(brother_of(Jim)), ...

As the example shows the Herbrand Universe is infinite if a functor with arity greater than 0 exists. 

What is the Herbrand Universe of a triple database?  This is composed of:

· all the constant letters: all possible URI’s.

Well, thats it!! There are no functions in N3; only triples Triple(...) which is the equivalent of a predicate. 

The Herbrand Base includes all possible formulas evaluated on the Herbrand Universe.

Definitions: a literal is an atomic formula or its negation.

                    A ground instance is obtained by substituting all the variables in a literal by expressions not involving variables.

The Herbrand base of a set of clauses W is the set of all ground instances of all atomic formulas appearing in W, where H(W) is used to obtain expressions not involving variables.

The Herbrand base of the above example is:

Wise(Jim), Wise(brother_of(Jim)), Taller(Jim, Jim), Taller(brother_of(Jim), Jim) etc...

What is the Herbrand Base of an N3 database? 

Example:

:a :b :c.

:f :g :h.

{{:a :x :c. :f :g :h} log:implies {:d :y :z}} log:forAll :x, :y; log:forSome :z.

The Herbrand Base will be:

{:a :b :c. :f :g :h. {:a :uriX1 :c. :f :g :h} ( {:d :uriX2 :uriX3}} where uriXn is a uri from the domain and if the log:forSome is neglected. 

But is this simple view still valid when the restrictions imposed by rdfs en owl are imposed? These restrictions will have as a consequence that certain uri’s cannot be used for constituting the Herbrand Base so that the Herbrand Base will be smaller. 

[GENESERETH ] A Herbrand interpretation has three parts:

1) the domain is the Herbrand Universe

2) the constants are mapped onto themselves

3) a mapping R from the Herbrand base to {true, false}.

An interpretation of the example above:

Jim => Jim

brother_of(Jim) => brother_of(Jim)

Wise(Jim) => true

Wise(brother_of(Jim)) => false

Taller(Jim, Jim) => false

Taller(brother_of(Jim), Jim) => true

etc ...

An interpretation of the N3 example above:

:a :b :c. => :a :b :c.

:f :g :h. => :f :g :h.

{:a :b :c. :f :g :h} ( {:d :uri1 :uri2} => true

{:a :b :c. :f :g :h} ( {:d :uri3 :uri4} => false

{:a :uri5 :c. :f :g :h} ( {:d :uri6 :uri7} => false

Herbrand theorem: a formula in clause normal form is unsatisfiable iff all of its Herbrand interpretations are false. Furthermore it is unsatisfiable iff some finite conjunction of Herbrand ground instances is unsatisfiable. Hence the Herbrand method: add negation of conclusion to the premises to form the satisfaction set. Loop over Herbrand interpretations. Cross out each interpretation that does not satisfy the sentences in the satisfaction set. If all Herbrand interpretations are crossed out,by the Herbrand Theorem, the set is unsatisfiable.

This procedure is sound and complete if there are only finitely many Herbrand interpretations. 

If the domain (of uri’s) in N3 is finite then the number of Herbrand interpretations is finite too. If the use of numbers is permitted (and it is) then the doamin is infinite. However many applications will de facto use a finite domain. 

Unification and substitution

A substitution subst is a set of ordered pairs:

{(t1,u1),(t2,u2),...} such that (i /= j) ( u(i) /= u(j); t(i) are terms and u(i) are variables. The variables are substituted by the terms.

A unifier subst of a set of literals {L(i)} is a most general unifier (mgu) if for any other unifier substx, there exists a substitution substy such that: L(i)subst.substx =

L(i)substy for all i. 

The unification algorithm for finding the mgu for two literals:

Scan the literals till a disagreement is found; the disagreement set consists of the two disagreed symbols; the substitution is enlarged to accomodate the disagreement set. This can be done, if in the disagreement set there exists a variable which can be set to a term. Otherwise failure is reported. 

The resolution rule

Given two clauses L and M with no variables in common. Be l a term in L and m a term in M. Suppose that a mgu subst exists which unifies the set l union not m. Then the two clauses resolve to a new clause (L – l) union (M-m). The newly inferred clause is called the resolvent. 

The resolution method

Given a set of axioms A and a theorem T.

· put the set of axioms A in its conjunctive normal form.

· put not T in its conjunctive normal form.

· Form the set of clauses A union not T.
· Apply the resolution rule.


If the empty clause is produced, then the theorem T logically follows from the set of axioms A. 

Resolution is refutation complete for first order logic: if a contradiction exists it will be found. 

Resolution strategies

[UMBC]

· Breadth first

· Set of support: at least one parent clause must be from the negation of the goal or one of the “descendents” of such a goal clause. This is a complete procedure that gives a goal directed character to the search.

· Unit resolution  at least one parent clause must be a “unit clause” i.e. a clause containing a single literal. This is not generally complete, but complete for Horn clauses. 

· Input resolution: at least one parent comes from the set of original clauses (from the axioms and the negation of the goals). This is not complete in general but complete for Horn clause KB'’. 

· Linear resolution: this is an extension of input resolution. Use P and Q if P is in the initial KB and query or P is an ancestor of Q. This is complete. 

· Ordered resolution: this is the way prolog operates; the clauses are treated  from the first to the last and each single clause is unified from left to right.

· Subsumption: eliminate all clauses that are subsumed. This simplifies but does not change the final result.  

Paramodulation: is an inference rule for resolution whereby equals are replaced by equals:

t=s v K1 v … v Kn

L(t’) v N1 v … v Nm       and ((t’) = ((t)

((L(s)) v ((N1) v … v ((Nm) v ((K1) v … v ((Kn)

PAGE  
7

