Abstract

In order to realize the semantic web general inference engines will be needed. A list of necessary characteristics of such an engine will be presented.[TBL, TBL01] 

With the test cases of Deroo [DEROO] as a guidance an executable Haskell specification of a resolution based inference engine was build with as model a Haskell specification of prolog [JONES] leading to the establishment of a new inference mechanism. A justification of the used inference mechanism is given. First a model in first order logic of the RDF data model [RDFM] was made. A study was done of the theorem prover Otter to see whether the inference mechanism could be implemented with Otter[WOS]. It was found that this is not possible without programming what would offer no advantage over programming in Haskell. Then the found unification mechanism was justified using the general first-order resolution theory[WOS]. The clauses in the database are not horn clauses but form a subset of first-order logic. The underlying model has graph-based semantics [RDFM] and shows potentialities for the description of graph-related problems. One of the strong points is that every node in the graph can be itself a graph what offers large potentialities for the description of complex nodes. 

It was studied how sets of meta-rules in Notation 3 can be made for following extensions: RDF-Schema, OWL, boolean algebra, Gentzen calculus and natural deduction. 

A major suggestion is done for optimising the engine. 

For the problem of inconsistencies that can arise as a consequence of the merger of different files on the internet, the conclusion is reached that the engine must be linked to a trust system composed of policy rules. It is possible the define those policies using the logic system defined by the logic extension of Notation 3.  

Characteristics of an inference engine

Taking into account the description of the goals of the semantic web and examples thereof [TBL] [TBL01] it is possible and necessary to deduce a list of characteristics that an inference engine for the semantic web should have. 

1) Trust: the notion of trust has an important role in the semantic web. If exchanges between computers have to be done in an automatic way a computer on one site must be able to trust the computer at the other side. To determine who can be trusted and who not a policy is necessary. When the interchanges become fully automatic those policies will become complicated sets of facts and rules. Therefore the necessity for an inference engine that can make deductions from such a set. When deducing whether a certain source can be trusted or not the property of monotonicity is desirable: the decision on trustworthiness should not be changed after loading e.g. another rule set. 

2) Inconsistencies and truth: if inconsistencies are encountered e.g. site a says a person is authenticated to do something and site b says this person is not, the ‘truth’ is the determined by the rules of trust: site a e.g. will be trusted and site b not. So truth does not have anymore an absolute value. 

     1 & 2 imply that the engine should be coupled to the trust system. 

3) Reasoning in a closed world often not is possible anymore. A query: is x a mammal will not be replied at if x cannot be found; the engine might find: x is a bird but can this be trusted? Prolog would suppose that all mammals are known in its database and when it does not find x to be a mammal it would say: x is no mammal. However on the internet it is not possible to assume that x is not a mammal. The world is open and in general sets should not be considered to be complete. This might pose some problems with OWL and especially with that part of the ontology that handles sets like intersection, complement of etc.. How to find the complement of a set in an open world?

4) An open world means also heterogenous information. The engine can fetch or use facts and rules coming from anywhere. So finally it might use a database composed with data and rules from different sites that contains inconsistencies and contradictions. This poses the problem of the detection of such inconsistencies. This again is also linked to the trust system.

5) In general proving a theorem even in propositional calculus cannot be done in a fully automatic way. [Wos]. As the semantic web talks about automatic interchange this means that it should not be done. So the engine will be limited to proof verification. However this implies also querying. Indeed to verify a proof it should be possible to execute queries to gather the necessary information. 

6) The existence of a semantic web means cooperation. Cooperation means people and their machines following the rules: the standards. The engine must work with the existing standards. There might be different standards doing the same thing. This implies the existence of conversions e.g. rule sets for the engine that convert between systems. This thesis will work with the standards XML, RDF, RDFS, OWL without therefore saying that other standards ought not to be considered. This does not imply that the author always agrees with all features of these standards but, generally, nobody will ever agree with all features of a standard. Nevertheless the standards are a necessity. Therefore the standards will be followed in this thesis. It seems however permitted to propose alternatives. For the logic of an inference engine no standards are available (or consider proposition logics and FOL as standards? ). Important standardisations efforts have to be done to assure compatibility between inference engines.  Anyhow, the more standards the less well the cooperation will work. Following the standard RDF has a lot of consequences: unification involves unifying sets of triples; functions are not available. The input and the output of the inference engine have to be in rdf. Also the trace must be in rdf for providing the possibility of proof verification. 

7) When exchanging messages between civilians, companies, government and other parties the less point to point agreements have to be made the more easy the process will become. This implies the existence of (a) standard ontologies(gy). If agreement could be reached about some e.g. +- 1000 ontological concepts and their semantic effects on the level of a computer, the interchange of messages between parties on the internet could become a lot more easy. This implies that the internet inference engines will have to work with ontologies. Possibly however this ontological material can be translated to first-order logic terms.

8) The engine has to be extensible in an easy way: an API must exist that allows easy insertion of plugins. This API of course must be standardised.

9) The engine must have a model implementation that is open source and has a structure that is easy to understand (for as far as this is possible) so that everybody can get acquainted in an easy way with the most important principles.

10) All interchanges should be fully automatic (which is why the semantic web is made in the first place). Human interventions should only happen when the trust policies are unable to take a decision or their rules prescribe a human intervention.

11)  The engine must be able to work with namespaces so that the origin of every notion can be traced.

12) As facts and rules are downloaded from different internet sites and loaded into the engine, the possibility must exist also to unload them. So it must be possible to separate again files that have been merged. The engine should also be able to direct queries to different rule sets. 

13) The engine must be very fast as very large facts and rules bases can exist e.g. when the contents of a relational database are transformed to RDF. This thesis has a few suggestions for making a fast engine . On of them implicates making a typed resolution engine; the other is point 14. 

14) Concurrency: this can happen on different levels: the search for alternatives can be done concurrently over different parts of the database; the validity of several alternatives can be checked concurrently; several queries can be done concurrently i.e. the engine can duplicated in different threads. 

15) Duplicating the engine in several threads also means that it must be lightweight or reentrant. 

16) There should be a minimal set of builtins representing functions that are commonly found in computer languages, theorem provers and query engines like: lists, mathemathical functions, strings, arrays and hashtables.

17) Existing theorem provers can be used using an API that permits a plugin to transform the standard db structure to the internal structure of the theorem prover. However as detailed in the following texts this is not an evident thing to do. As a matter of fact the thesis is defended that it is better to write new engines destined specifically for use in the semantic web. 

18) FOL technologies seem to be most adapted bacause of the definition of rdf in fol: resolution can be used; also Gentzen calculus or natural deduction could be used; CWM uses forward reasoning. This thesis will be based on a basic resolution engine. Gentzen calculus or natural deduction or others can be defined with rule sets defined in Notation3. 

Modelling rdf in FOL
RDF works with triples. A triple is composed of a subject, predicate and object. These items belong together and may not be separated. To model them in FOL a predicate Triple can be used :

Tripel(subject, predicate, object)

Following the model theory [RDFM] there can be sets of triples that belong together. If t1, t2 and t3 are triples, a set of triples might be modelled as follows:

Tripleset(t1, t2, t3)

This is however not correct as the length of the set is variable; so a list must be used (see further). 

There exist also anonymous subjects: these can be modeled by an existential variable:

( X: Triple(X, b, c) 

saying that there exists something with property b and value c. 

An existential elimination can also be applied putting some instance for the variable (existential elimination):

Triple(_ux, b, c)

Now let's consider the RDF data model [RDFM]:

Sets in the model :

1) There is a set called Resources. 

2) There is a set called Literals. 

3) There is a subset of Resources called Properties. 

4) There is a set called Statements, each element of which is a triple of the form 

{pred, sub, obj}

where pred is a property (member of Properties), sub is a resource (member of Resources), and obj is either a resource or a literal (member of Literals).(Note: this text will use the sequence {sub, pred, obj}).

5)RDF:type is a member of Properties.

6)RDF:Statement is a member of resources but not contained in Properties.

7)RDF:subject, RDF:predicate and RDF:object are in Properties.

Note: for convenience Triple will be abbreviated T and TripleSet TS.

This gives the following first order facts and rules:

1) T(rdf:Resources, rdf:type, rdfs:Class)

2) T(rdf:Literals, rdf:type, rdfs:Class)

3) T(rdf:Resources, rdfs:subClassOf,  rdf:Properties)

4) T(rdf:Statements, rdf:type, rdfs:Class)

    (s, sub, pred, obj: T(s, rdf:type, rdf:Statements) -> (Equal(s, Triple(sub, pred, obj)) ( T(pred, rdf:type, rdf:Property) ( T(sub, rdf:type, rdf:Resources) ( T(obj, rdf:type, rdf:Resources) ( T(obj, rdf:type, rdf:Literals)))

5) T(rdf:type, rdf:type, rdf:Property) Note the recursion here. 

6) T(rdf:Statement, rdf:type, rdf:Resources) 

    (T(rdf:Statement, rdf:type, rdf:Property)

7) T(rdf:subject, rdf:type, rdf:Property)

    T(rdf:predicate, rdf:type, rdf:Property)

    T(rdf:object, rdf:type, rdf:Property)

As subjects and object are Resources they can be triples too (called “embedded triples”); predicates however cannot be triples because of rule 6. This can be used for an important optimisation in the unification process (see further). 

Reification of a triple {pred, sub, obj} of Statements is an element r of Resources representing the reified triple and the elements s1, s2, s3, and s4 of Statements such that 

s1: {RDF:predicate, r, pred} 
s2: {RDF:subject, r, subj} 
s3: {RDF:object, r, obj} 
s4: {RDF:type, r, [RDF:Statement]}

In fol:

(r, sub, pred, obj: T(r, rdf:type, rdf:Resources) ( T(r, rdf :predicate, pred) ( T(r, rdf:subject, subj) ( T(r, rdf:subject, obj) -> T(r, Reification, T(sub, pred, obj))
As was said a set of triples has to be represented by a list:

{:d :e :f. :g :h :i. :a :b :c} becomes:

TS(T(d, e, f),TS(T(g,h,i),TS(T(a,b,c))))

In prolog e.g. :

[T(d, e, f)|T(g, h, i)|T(a, b, c].

In Haskell this is better structured: 

data TripleSet = TripleSet [Triple]

triple = TripleSet [Triple(d, e, f), Triple(g, h, i), Triple(a, b, c)]

Conclusion

RDF can be reduced to a subset of first order logic. It is restricted to the use of a single predicate Triple and lists of triples. 

For convenience in what follows lists will be represented between ‘[]’; variables will be identifiers prefixed with ?.

Unification and the RDF graph model

An RDF graph is a set of zero, one or more connected subgraphs. The elements of the graph are subjects, objects or bNodes (= anonymous subjects). The arcs between the nodes represent predicates. 

Suppose there is the following DB:

TS[T(Jack, owner, dog),T(dog, name, “Pretty”), T(Jack, age, “45”)], TS(T(dog, name, “Ugly”))

And a query: TS(T(?who, owner, dog), T(dog, name, ?what))

Clearly the answer:T(Jack, owner, dog),T(dog, name, “Ugly”) is not wanted. So the triples in the triple set of the query may not be separated and they must match with triples in a connected subgraph. The situation of course is different when the query is:

TS(T(?who, owner, dog)), TS(T(dog, name, ?what))

Here in fact three answers will be given. 

If we represent the first subgraph of the DB and the first query as follows:

T(Jack, owner, dog) ( T(dog, name, “Pretty) ( T(Jack, age, “45”)

and the query(here negated for the proof):

(T(?who, owner, dog) ( (T(dog, name, ?what)

Then by applying the rule of UR (Unit Resolution) to the query and the triples T(Jack, owner, dog) and T(dog, name, “Pretty) the result is the substitution: [?who ( Jack, ?what ( “Pretty”] .

Proof of this application: T(a) ( T(b) ( ((T(a) ( (T(b)) =

T(a) ( (T(b) ( (T(a)) ( (T(b) ( (T(b)) = T(a) ( (T(b) ( (T(a)) = False

This proof can be extended to any number of triples. This is in fact UR resolution with a third empty clause. 

In [WOS]: “Formally, UR-resolution, is that inference rule that applies to a set of clauses one of which must be a non-unit clause, the remaining must be unit clauses, and the result of successfull application must be a unit clause. Furthermore, the nonunit clause must contain exactly one more literal than the number of (not necessarily distinct) unit clauses in the set to which UR-resolution is being applied. “

A query (goal) applied to a rule gives:

 (T(a) (T(b)) ( T(c) = ( T(a) ( ( T(b) (  T(c)

where the query will be : ( T(?c)

Here the application of binary resolution gives the new goal:

 ( T(a) ( ( T(b) and the substitution ?c ( c.

In [WOS] :  “ Formally, binary resolution is that inference rule that takes two clauses, selects a literal in each of the same predicate but of opposite sign, and yields a clause providing that the two selected literals unify. The result of a succesful application of binary resolution is obtained by applying the replacement that unification finds to the two clauses, deleting from each (only) the descendant of the selected literal, and taking the or of the remaining literals of the two clauses. “ 

This application does not produce a contradiction; it adds the clause       ( T(a) ( ( T(b) to the set of support.

The logical implication is not part of RDF or RDFS. It will be part of a logic standard for the semantic web yet to be established.

This unification mechanism is classical FOL resolution, however with a restriction on the number of solutions imposed by the constraint of subgraph matching. 

This model of unification is not natively supported by current theorem provers; in order to use it with those provers, programming the model is necessary. 

Embedded rules
Embedded rules should pose no problems. When a rule produces a rule it is added to the set of support. A rule in the set of support should be unified with a tripleset but not with another rule. 

An example of the use of embedded rules: 

Suppose a reasoning generates a triple T(outcome, =, X1) and depending on that value a rule must be generated: T(?X1,>,X2) ( T(?X1, = ,?X1/X3).

Hence the rule: (T(?X1,>,X2) ( T(?X1,=, X3)) ( T(outcome, =, ?X1). This rule generated in the set of support will then unify with clauses of the form : T(_,=,X3).

In fact a rule represents generally a relation: for each set of values for the variables in the antecedents there is a set of values for the consequent, while the consequent may contain (a) variable(s) not present in the antecedents. If the consequent does not contain variables different from those in the antecedents then the rule represents a function (from the domain of  triplesets to the domain of triplesets). 

Completeness and soundness of the engine
The algorithm used in the engine is a resolution algorithm. Solutions are searched by starting with the axiom file and the negation of the lemma(query). When a solution is found a constructive proof of the lemma has also been found in the form of a contradiction that follows from a certain number of traceable unification steps as defined by the theory for first order resolution. Thus the soundness of the engine can be concluded. 

In general completeness of the engine will be impossible. It is an engine for verification of proofs; no garantuee can be given if a certain proof is refused about the validity of the proof. If it is accepted the garantuee is given of its correctness. 

The unification algorithm clearly is decidable as a consequence of the simple ternary structure of N3 triples. The unification algorithm in the module N3Unify.hs can be seen as a proof of this.

Optimisation
As was mentionned higher, the fact that a predicate is always a variable or an URI but never a complex term, permits a very substantial optimisation of the engine. Indeed all clauses(triples) can be indexed by their predicate. Whenever a unification has to be done between a goal and the database, all relevant triples can be looked up with the predicate as an index. Of causes the match will always have to be done with clauses that have a variable predicate. When this happens in the query then the optimisation cannot be done. However such a query normally is also a very general query. In the database however variable predicates occur mostly in general rules like the transitivity rule. In that case it should be possible to introduce a typing of the predicate and then add the typing to the index. In this way, when searching for alternative clauses it will not be necessary to consider the whole database but only the set of selected triples. This can further be extended by adding subjects and objects to the index. Eventually a general typing system could be introduced where a type is determined for each triple according to typing rules (who can be expressed in notation 3 for use by the engine). 

When the triples are in a database (in the form of relational rows) the collection of the alternatives can be done ‘on the fly’  by making an (SQL)-query to the database. In this way part of algoritm can be replaced by queries to a database. 

Inconsistencies 

When rules and facts originating form different sites on the internet are merged together into one database, inconsistencies will arise. Two categories can be distinguished:

1) inconsistencies provoked with malignous intent

2) unvoluntary inconsistencies

Category 1: there are, of course a lot of possibilities, and hackers are inventive. Two possibilities:

a) the hacker puts rules on his site or a pirated site which are bound to give difficulties e.g. inconsistencies might already be inherent in the rules.

b) The namespace of someone else is ursurpated i.e. the hacker uses somebody elses namespace(s).

Category 2: unvoluntary errors.

a) syntax errors: these shuld be detected.

b) logical errors: can produce faulty results or contradictions. But what can be done against a bad rule e.g. a rule saying all mammals are birds? A contradiction will only arise when there is a rule (rules) saying that mammals are not birds or this can be concluded. 

When there are inconsistencies detected it is important to trace the origin of the inconsistencies (which is not necessarily determined by the namespace). This means all clauses in the DB have to be marked. How can the origin be traced back to an originating site? 

When two contradictory solutions are found or two solutions are found and only one is expected, a list of the origins of the clauses used to obtain the solutions can eventually reveal a difference in origin of the clauses. When no solution is found, it is possible to suspect first the least trusted site. How to detect who is responsible? 

[DEROO]     http://www.agfa.com/w3c/jdroo 

                    * the site of the Euler program

[JONES] http://www.haskell.org/hugs/demos/prolog  The prolog demo in the Hugs distribution.

 [RDFM]RDF Model Theory .Editor: Patrick Hayes 

                    <http://www.w3.org/TR/rdf-mt/>
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