Chapter 5. The graph model of RDF and distributed inferencing.

5.1. Introduction

In chapter 3 RDF is described from the point of view of the data model. This chapter will focus on the graph model of RDF as described in the RDF model theory [RDFM]. Examples of coding in Haskell will also be given.

I will present in this chapter an interpretation that is based on graph theoretical reasoning. A clear and well defined definition will be given for rules, queries and solutions i.e. a definition that permits to check the validity of solutions. It also gives guidelines as to what constitute well constructed rules. I present a series of lemmas to prove the validity of the resolution process as it is implemented in the engine of De Roo [DEROO] and the engine developed for this thesis, RDFEngine. The anti-looping mechanism from De Roo is explained and its validity is proved.

A model of distributed inferencing is presented. A client starts a query on a server. The server in its turn can direct sub-queries to another server. The secondary server return results to the main server. The results are returned in a verifiable standard format based on forward reasoning. It does not matter which specific inferencing method is used on the secondary server. The main server accepts or rejects the results. If accepted inferencing continues.

5.2.Recapitulation and definitions

I give a brief recapitulation of the most important points about RDF. [RDFM,RDF Primer, RDFSC].

RDF is a system for expressing meta-information i.e. information that says something about other information e.g. a web page. RDF works with triples. A triple is composed of a subject, a property and an object. Subject, property and object can have as value a URI or a variable. An object can also be a literal.

In the graph representation subjects and objects are nodes in the graph and the arcs represent properties. No nodes can occur twice in the graph. The consequence is that some triples will be connected with other triples; other triples will be alone. Also the graph will have different connected subgraphs.

A node can also be an blank node. A blank node can be instantiated with a URI or a literal and then becomes a ‘normal’ node.

A valid RDF graph is a graph where all arcs are valid URI’s and all nodes are either valid URI’s, valid literals, blank nodes (= variables) or triplesets .

A tripleset is a set of connected triples i.e. triples that have at least one node in common. Therefore a tripleset is also a connected subgraph. The RDF graph is the set of all triplesets. Rules are triples too.

Triples will be noted as: (subject, property, object). A tripleset will consist of triples between ‘{‘ and ‘}’.

Fig.5.1 gives examples of triples.

[image: image15.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

Fig.5.1. Some RDF triples. The triples in a) together form the graph in b). A graph cannot have duplicate nodes.

Triples can be ‘stand-alone’ or they can form a graph. The first triple says that John owns a car and the second says that there is a car with brand Ford. The third drawing however is composed of two triples (and is thus a triple set) and it says that John owns a car with brand Ford.

I give here the Haskell representation of triples

(Note: the Haskell code in the text is simplified compared to the source code in annexe).

data Triple = Triple (Subject, Predicate, Object) | TripleNil

type Subject = Resource

type Predicate = Resource

type Object = Resource

data Resource = URI String | Literal String | Var Vare | TripleSet | ResNil

type TripleSet = [Triple]

-- the definition of a variable

data Vare = UVar String | EVar String | GVar String | GEVar String

Rules are triples of which the subject and object are formed by triplesets. The interpretation of variables and rules will be explained in following paragraphs.

Suppose fig.5.1 represents the RDF graph. Now let’s make a query. A query is made when someone wants to know something. A person wants to know whether certain triples are in the database. She wants to know e.g. if John owns a car or she wants to know all persons who own a car (and are in the database).

The first query is: {(John, owns,car)}.

The second query is: {(?who, owns,car)}.

This needs some definitions:

A single query is a tripleset. Semantically a query is an interrogation of the database. A query can be composed and exists then of a set of triplesets called the query set. It is then a RDF graph with an empty ruleset. When the inferencing starts the query set becomes the goallist. The goal set is the collection of triplesets that have to be proved i.e. matched against the database. This process will be described in detail later.

The answer to a query consists of one or more solutions. A solution to a query is either an affirmation that a certain triple or set of triples exists; or else it is the original query with the variables replaced by URI’s or literals. I will later give a more precise definition of solutions.

 A variable will be indicated with a question mark. For this chapter it is assumed that the variables are of type UVar i.e. local universal variables. The types are UVar for a local, universal variable; Evar for a local, existential variable; Gvar for a global, universal variable; GEVar for a global, existential variable.

A grounded triple is a triple of which subject, property and object are URI’s or literals, but not variables. A grounded tripleset contains only grounded triples.

A query can be grounded. In that case an affirmation is sought that the triples in the query exist, but not necessarily in the database: they can be deduced using rules.

Fig.5.2 gives the representation of some queries.

In the first query the question is: who owns the car ‘car’? The answer is of course “John”. In the second query the question is: what is the brand of the car ‘car’? The third query however asks: who owns the car ‘car’ and what is the brand of that car?

Here the query is a graph containing variables. This graph has to be matched with the graph in fig.5.1. So generally for executing a RDF query what has to be done is ‘subgraph matching’.

Following the data model for RDF the two queries are in fact equal because a sequence of triples is implicitly a conjunction. Fig.5.2 illustrates this. [image: image2.png]b)

“2who

owns

. - .
o = @

- — @

Fig.5.2. Some RDF queries. The query in a) is composed of two triples and forms thus a tripleset. This tripleset is equivalent to the graph in b).

[image: image3.png]. - .

o = e
o = @

owns mark

BMWw

Ford

()

Fig. 5.3.A semantic error in a sequence of RDF triples.

Through the implicit conjunction the first two triples have to be joined together in one subgraph. Though this is a valid RDF graph it probably is not the intention of the author of the triples. John’s car cannot have two different brands.

The variables in a query are replaced in the matching process by a URI or a literal. This replacement is called a substitution. It is a tuple (variable, URI) or (variable, literal). I will come back on substitutions later.

Suppose there exists a rule: if X owns a car then X must pay taxes. How to represent such a rule ? Fig.5.4 gives a graph representation of a rule.

[image: image4.png]Antecedent(s)

. - .

° must_pay

implies

Consequent

Fig.5.4. A graph representation of a rule. An arrow is drawn to indicate a logical implication.

The nodes of the rule form a triple set. Here there is one antecedent but there could be more. There is only one consequent. Fig.5.5 gives a query that will match with the consequent of the rule.

[image: image5.png]must_pay H

Fig. 5.5. A query that matches with a rule.

The desired answer is of course: John must pay taxes. The query of fig.5.5 is matched with the consequent of the rule in fig.5.4. Now an action has to be taken: the antecedents of the rule now become the new query. The variable ?x is replaced by the variable ?who and the new query is now: who owns a car? This is equal to a query described earlier. Important is that a rule subgraph is treated differently from non-rule subgraphs.

This way of representing rules is very close to the way prolog represents rules e.g. must_pay(X,taxes) := owns(X,car). The rule exists here of a consequent (the first part) and an antecedent (the second part after the ‘:=’). This interpretation of rules is not very satisfactory for RDF. I will later give another interpretation of rules that is better suited for interpreting the inference process. Now I give the definition:

A rule is a triple. Its subject is a tripleset containing the antecedents and its object is a tripleset containing the consequents. The property of the rule is the URI : http://www.w3.org/2000/10/swap/log# implies. [SWAP] . I will give following notation for a rule:

{triple1, triple2,…} implies {triple11,triple21,….}

For a uniform handling of rules and other triples the concept statement is introduced in the abstract syntax:

type Statement = (TripleSet, TripleSet,String)

type Fact = Statement -- ([],Triple,String)

type Rule = Statement

In this terminology a rule is a statement. The first tripleset of a rule is called the antecedents and the second tripleset is called the consequents. A fact is a rule with empty antecedents. The string part in the statement is the provenance information. It indicates the origin of the statement.

A RDF graph is a set of statements. It is represented in Haskell by an Abstract Data Type: RDFGraph.hs.

data RDFGraph = RDFGraph (Array Int Statement, Dict, Params)

The statements composing the graph are in an array. The elements Dict and Params in the type RDFGraph constitute a dictionary or hashtable.
A predicate is associated with each statement. This is the predicate of the first triple of the second tripleset of the graph. An entry into the dictionary has as a key a predicate name and a list of numbers. Each number refers to an entry in the array associated with the RDFGraph.

Example: Given the triple (a,b,c) that is entry number 17 in the array, the entry in the dictionary with key ‘b’ will give a list of numbers […,17,…]. The other numbers will be triples or rules with the same predicate.

The ADT is accessed by means of a mini-language defined in the module RDFML.hs. This mini-language contains commands for manipulating triples, statements and RDF Graphs. Fig. 5.2. gives an overview of the mini-language.

	description of the Mini Language for RDF Graphs

	 for the Haskell data types see: RDFData.hs

	

	triple :: String -> String -> String -> Triple

	triple s p o : make a triple

	

	nil :: Triple

	nil : get a nil triple

	

	tnil :: Triple -> Bool (tnil = test (if triple) nil)

	tnil : test if a triple is nil

	

	s :: Triple -> Resource (s = subject)

	s t : get the subject of a triple

	

	p :: Triple -> Resource (p = predicate)

	p t : get the predicate of a triple

	

	o :: Triple -> Resource (o = object)

	o t : get the object of a triple

	

	st :: TripleSet -> TripleSet -> Statement (st = statement)

	st ts1 ts2 : make a statement with two triplesets

	

	stnil :: Statement (stnil = statement nil)

	stnil : get a nil statement

	

	tstnil :: Statement -> Bool (tstnil = test if statement nil)

	tstnil : test if a statement is nil

	

	trule :: Statement -> Bool (trule = test (if) rule)

	trule st = test if the statement st is a rule

	

	tfact :: Statement -> Bool (tfact = test (if) fact)

	tfact st : test if the statement st is a fact

	

	stf :: TripleSet -> TripleSet -> String -> Statement (stf = statement full)

	stf ts1 ts2 n : make a statement where the Int indicates the specific graph.

	 command 'st' takes as default graph 0

	

	protost :: String -> Statement (protost = (RDF)prolog to statement)

	protost s : transforms a predicate in RDFProlog format to a statement

	 example: "test(a,b,c)."

	

	sttopro :: Statement -> String (sttopro = statement to (RDF)prolog)

	sttopro st : transforms a statement to a predicate in RDFProlog format

	

	ants :: Statement -> TripleSet (ants = antecedents)

	ants st : get the antecedents of a statement

	

	cons :: Statement -> TripleSet (cons = consequents)

	cons st : get the consequents of a statement

	

	fact :: Statement -> TripleSet

	fact st : get the fact = consequents of a statement

	

	tvar :: Resource -> Bool (tvar : test variable)

	tvar r : test whether this resource is a variable

	

	tlit :: Resource -> Bool (tlit = test literal)

	tlit r : test whether this resource is a literal

	

	turi :: Resource -> Bool (turi = test uri)

	turi r : test whether this resource is a uri

	

	grs :: Resource -> String (grs = get resource (as) string)

	grs r : get the string value of this resource

	

	gvar :: Resource -> Vare (gvar = get variable)

	gvar r : get the variable from the resource

	

	graph :: TripleSet -> Int -> String -> RDFGraph

	graph ts n s : make a numbered graph from a triple store.

	 the string indicates the graph type: predicate 'gtype(s)'

	 the graph number is as a string in the predicate:

	 'gnumber("n")'

	

	agraph :: RDFGraph -> Int -> Array Int RDFGraph -> Array Int RDFGraph

	agraph g n graphs : add a RDF graph to an array of graphs at position

	 n. If the place is occupied by a graph, it will be

	 overwritten. Limited number of entries by parameter maxg.

	

	maxg defines the maximum number of graphs

	maxg :: Int

	maxg = 5

	

	pgraph :: RDFGraph -> String (pgraph = print graph)

	pgraph : print a RDF graph in RDFProlog format

	

	pgraphn3 :: RDFGraph -> String (pgraphn3 = print graph in Notation 3)

	pgraphn3 : print a RDF graph in Notation 3 format

	

	cgraph :: RDFGRaph -> String (cgraph = check graph)

	cgraph : check a RDF graph. The string contains first the listing of the original triple store in

	 RDF format and then all statements grouped by predicate. The two listings

	 must be identical

	

	apred :: RDFGraph -> String -> [String] -> RDFGraph (apred = add predicate)

	apred g p [t] : add a predicate of arity (length t). g is the rdfgraph, p is the

	 predicate and [t] are the terms.

	

	astg :: RDFGraph -> Statement -> RDFGraph (astg = add statement to graph)

	astg g st : add statement st to graph g

	

	dstg :: RDFGraph -> Statement -> RDFGraph (dstg = delete statement from graph)

	dstg g st : delete statement st from the graph g

	

	gpred :: RDFGraph -> String -> [Statement] (gpred = get predicate)

	grped g p : get the list of all statements from graph g with predicate p

	

	gpredv :: RDFGraph -> String -> [Statement] (gpredv = get predicate and variable (predicate))

	gpredv g p : get the list of all statements from graph g with predicate p

	 and with a variable predicate.

Fig. 5.6. The mini-language for manipulating triples, statements and RDF graphs.

A RDF server can have several RDF graphs. This constitutes a modular structure. The inferencing process uses a list of graphs. Graphs can be loaded and unloaded. The inferencing is done over all loaded graphs.

An inference step is the matching of a statement with the set of RDF graphs. An inference step uses a data structure InfData:

type InfData = (Array Int RDFGraph,Goals,Stack,Level,

 PathData,Subst,[Solution],MatchList,Trace)

This data structure is described in fig.5.7.

This is a complex data structure. It is manipulated using a mini-language (fig. 5.8)

The elements are :

Array Int RDFGraph: The array containing the RDF graphs.

Goals: The list of goals that have to be proved.

Stack: The stack needed for backtracking.

Level: The inferencing level. This is needed for renumbering the variables and backtracking.
PathData: A list of the statements that have been unified. This is used to establish the proof of the solutions.

Subst: The current substitution. This substitution must be applied to the current goal.

[Solution]: The list of the solutions.

type InfData = (Array Int RDFGraph,Goals,Stack,Level,

 PathData,Subst, [Solution], MatchList,Trace)

* Array Int RDFGraph: this is the array of RDF graphs

* Goals: this is the list of goals. The format is:

 type Goals = [Statement]

* Stack: the stack contains all data necessary for backtracking. The format is:

 type Stack = [(Subst, FactSet, MatchList)]

The stack is a list of triples. The first element in the triple is a substitution. The second element is a list of facts:

 type FactSet = [Statement]

The third element is a list of matches. A match is a triple and is the result of matching two statements:

 type MatchList = [Match]

 type Match = (Subst, Goals, BackStep)

Matching two statements gives a substitution, a list of goals (that may be empty) and a backstep. A backstep is nothing else than a tuple formed by the two matched statements:

 type BackStep = (Statement, Statement)

The purpose of the backstep is to keep a history of the unifications. This will serve for constructing the proof of a solution when it has been found.

* Level: an integer indicating the backtacking level.

* PathData: this is a list of tuples.

 type PathData = [(BackStep,Level)]

The pathdata forms the history of the occurred unifications. The level is kept also for backtracking.

* Subst: the current substitution

* [Solution]: the list of the solutions. A solution is a tuple:

 type Solution = (Subst,Closure)
A solution is formed by a substitution and a closure. A closure is a list of forward steps. A forward step is a tuple of statements. The closure is the proof of the solution. It indicates how the result can be obtained with forward reasoning. It contains the statements and the rules that have to be applied to them.

 type ForStep = (Statement,Statement)

 type Closure = [ForStep]

* MatchList: the type is explained above. The function choose needs this parameter for selecting new goals.

* Trace: this is a string; it contains information on het inference process.

5.7. The data structure needed for performing an inference step.

definition of the mini-language for accessing the inference

data structures

ggraphs infdata: get the array of graphs

sgraphs infdata: set the array of graphs

ggoals infdata: get the goal list

sgoals infdata: set the goal list

gstack infdata: get the stack

sstack infdata: set the stack

glev infdata: get the inferencing level

slev infdata: set the inferencing level

gpdata infdata: get the pathdata

spdata infdata: set the pathdata

gsubst infdata: get the current substitution

ssubst infdata: set the current substitution

gsols infdata: get the list of solutions

ssols infdata: set the list of solutions

gmatches infdata: get the matchlist

smatches infdata: set the matchlist

gtrace infdata: get the inference trace

strace infdata: set the inference trace

Fig.5.8. The mini-language for accessing the inference data structure.

An inference step has as only input an instantiation of InfData and as only output an instantiation of InfData. The data structure contains all the necessary information for the next inference step.

The inference step is the inferencing unit in a distributed inferencing environment. See also chapter 7 paragraph 4: the inference web [MCGUINESS2003]. The inference web defines a format based on DAML/OIL. Here a simpler format is used.

Another mini-language for inferencing is defined in module InfML.hs.

It is shown in fig. 5.9.

Description of the Mini Language for inferencing

For the Haskell data types: see RDFData.hs

esub :: Vare -> Resource -> ElemSubst (esub = elementary substitution)

esub v t : define an elementary substitution

apps :: Subst -> Statement -> Statement (apps = apply susbtitution)

apps s st : apply a susbtitution to a statement

appst :: Subst -> Triple -> Triple (appst = apply substitution (to) triple)

appst s t : apply a substitution to a triple

appsts :: Substitution -> TripleSet (appsts = apply substitution (to) tripleset)

appsts s ts : apply a substitution to a tripleset

unifsts :: Statement -> Statement -> Maybe Match (unifsts = unify statements)

unifsts st1 st2 : unify two statements giving a match

 a match is composed of: a substitution,

 the returned goals or [], and a backstep.

gbstep :: Match -> BackStep (gbstep = get backwards (reasoning) step

gbstep m : get the backwards reasoning step (backstep) associated with a match.

 a backstep is composed of statement1 and statement 2 of the match

 (see unifsts)

convbl :: [BackStep] -> Substitution -> Closure (convbl = convert a backstep list)

convbl bl sub : convert a list of backsteps to a closure using the substitution sub

gls :: Match -> [Statement] (gls = goals)

gls : get the goals associated with a match

gsub :: Match -> Substitution (gsub = get substitution)

gsub m : get the substitution from a match

Fig. 5.9. The mini-language for inferencing

A query can be directed to a secondary server. This is done by using the predicate “query”. In notation3 the format is [:query “server”] where “server” is the name of the server. All goals after the goal with predicate “query” and before a goal with predicate “end_query” will compose the query. This query is sent to the secondary server that returns a failure or a set of solutions. A solution is a substitution plus a proof. In this step a call to the trust system could be made as well on the primary server as on the secondary server. The primary server can eventually proceed by doing a verification of the proof. Then the returned results are added to the datastructure InfData of the primary server who proceeds with the inference process.

Clearly, this call on a secondary server must be done with care. In a recursive procedure this can easily lead to a kind of spam, thereby overloading the secondary server with messages.

A possibility for reducing the traffic consists in storing the results of the query in a rule with the format: {query}log:implies{result}. Then whenever the query can be answered using the rule, it will not be sent anymore to the secondary server. This constitutes a kind of learning process.

This mechanism can also be used to create virtual servers on one system, thereby creating a modular system where each “module” is composed of several RDF graphs. Eventually servers can be added or deleted dynamically.

5.3.Languages needed for inferencing

5.3.1.Introduction

Four languages are needed for inferencing [HAWKE] :

1) assertions: these are just a set of RDF triples

2) rules: a set of composed triples

3) queries: a set of triples

4) results: this are the results of the query. In this thesis they are expressed in an RDF syntax and are thus graphs too.

These are really different languages though they are all graphs. The reason is that there are differences between them about what is syntactically permitted, about the interpretation of the variables and, generally, about the operational use.

These languages differ in syntax and semantics. The query language presented in this thesis is a rather simple query language, for a standard engine on the World Wide Web something more complex will be needed.

5.3.2.Interpretation of variables

I will explain here what the RDFEngine does with variables in each kind of language:

There are 5 kinds of variables:

1) local universal variables

2) local existential variables

3) global universal variables

4) global existential variables

5) anonymous nodes

Overview per language:

1) assertions:

local means here: within the assertion.

local existential variables are instantiated with a unique special identifier.

If the same name is used in two assertions two identifiers will be created.

global existential variables: these are instantiated with a unique special identifier. If the same name is used in two assertions only one identifier is used.

local and global universal variables: they rest unchanged and are marked as what they are.

anonymous nodes: are treated as local or global existential variables depending on the way they are syntactically represented.

In a way, assertions containing universal variables are like rules in the sense that the variables may be replaced with URI’s and a triple can be generated and added to the closure graph.

2) rules:

local means: within the rule.

as in 1). If the consequent contains more variables as the antecedent then these have to be anonymous nodes or existential variables.

3) queries:

local means: within an assertion (triple) of the query; global means: within the query graph.

anonymous nodes: are treated as local or global existential variables depending on the way they are syntactically represented.

All other variables are marked in the abstract syntax as indicated in the concrete syntax.

5.3.3.Variables and unification

In the unification all variables are treated in exactly the same way. A variable in the query matches with a variable or a uri in an assertion or a rule. Remember however that during unification existential variables do not exist anymore as they have been instantiated by a unique special URI. Also all variables have received a unique identifier.

A URI in the query matches with an identical URI in the assertions and rules and with whatever variable in the assertions and rules.

5.4.Matching two triplesets

Fig.5.10 gives a schematic view of multiple matches of a triple with a triple set. The triple (Bart, son, ?w) unifies with two triples (Bart, son, Jan) and (Bart, son, Michèle). The triple (?w, son, Paul) matches with (Guido, son, Paul) and (Jan, son, Paul). This gives 4 possible combinations of matching triples. Following the theory of resolutions all those combinations must be contradicted. In graph terms: they have to match with the closure graph. However, the common variable ?w between the first and the second triple of triple set 1 is a restriction. The object of the first triple must be the same as the subject of the second triple with as a consequence that there is one solution: ?w = Jan. Suppose the second triple was: (?w1, son, Paul). Then this restriction does not any more apply and there are 4 solutions:

{(Bart, son, Jan),(Guido, son, Paul)}

{(Bart, son, Jan), (Jan, son, Paul)}

{(Bart, son, Michèle), (Guido, son, Paul)}

{(Bart, son, Michèle), (Jan, son, Paul)}

This example shows that when unifying two triple sets the product of all the alternatives has to be taken while the substitution has to be propagated from one triple to the next for the variables that are equal and also within a triple if the same variable or node occurs twice in the same triple.

Two remarks:

1) This algorithm can be implemented by a resolution process with backtracking.

2) The triple sets can contain variables; the algorithm amounts to the search of all possible subgraphs of a connected graph, where the possible subgraphs are defined by the triples and the variables in the first triple set.

[image: image6.png]TripleSet1

TripleSet2

T(Bart, son, 7W) e

T@w, son, Paul) ==

Solution: ?w = Jan

T(Bart, son, Jan)
T(Bart, son, Michele)
T(Guido, son, Paul)
T(Wim, son, Guido)
T(Jan, son, Paul)
T(Jan, son, Martha)
T(Guido, son, Martha)
T(Frank, son, Guido)
T(los, son, Fred)

Fig.5.10. Multiple matches within one TripleSet.

5.5.The model interpretation of a rule

A number of results from the RDF model theory [RDFM] are useful .

Subgraph Lemma. A graph entails all its subgraphs.

Instance Lemma. A graph is entailed by any of its instances.

An instance of a graph is another graph where one or more blank nodes of the previous graph are replaced by a URI or a literal.

Merging Lemma. The merge of a set S of RDF graphs is entailed by S and entails every member of S.

The merge can be seen as a merge of triplesets into one tripleset.

Monotonicity Lemma. Suppose S is a subgraph of S’ and S entails E. Then S’ entails E.

These lemmas establish the basic ways of reasoning on a graph. Later on I will add one basic way that is the implication which is materialized by the usage of rules.

The closure procedure used for axiomatizing RDFS in the RDF model theory [RDFM] inspired me to give an interpetation of rules based on a closure process.

Take the following rule R describing the transitivity of the ‘subClassOf’ relation:

{(?c1, subClassOf, ?c2),(?c2, subClassOf, ?c3)} implies {(?c1, subClassOf , ?c3)}.

The rule is applied to all sets of triples in the graph G of the following form:

{(c1, subClassOf, c2), (c2, subClassOf, c3)}

yielding a triple (c1, subClassOf, c3).

This last triple is then added to the graph. This process continues till no more triples can be added. A graph G’ is obtained called the closure of G with respect to the rule R. In the ‘subClassOf’ example this leads to the transitive closure of the subclass-relation.

If a query is posed: (cx, subClassOf, cy) then the answer is positive if this triple is part of the closure G’; the answer is negative if it is not part of the closure.

When variables are used in the query:

(?c1, subClassOf, ?c2)

then the solution consists of all triples (subgraphs) in the closure G’ with the predicate ‘subClassOf’.

The process is illustrated in fig. 5.11 and 5.12 with a similar example.

This gives following definitions:

A rule R is valid with respect to the graph G if the closure G’ of G with respect to the rule R is a valid RDF graph.

The graph G entails the graph T using the rule R if T is a subgraph of the closure G’ of the graph G with respect to the rule R.

A valid RDF graph follows the data model of RDF (chapter 2).

When more than one rule is used the closure G’ will be obtained by the repeated application of the set of rules till no more triples are produced.

Any solution obtained by a resolution process is then a valid solution if it is a subgraph of the closure obtained.

I will not enter into a detailed comparison with first order resolution theory but I want to mention following points:

the closure graph is the equivalent of a minimal Herbrand model in first order resolution theory or a least fixpoint in fixpoint semantics.[VAN BENTHEM] (See also chapter 4).

[image: image1.png]2 CD e G
o mark.

b)

mark.
- - e

Fig.5.11. A graph with some taller relations and a graph representing the transitive closure of the relation taller relative to the first graph.

[image: image7.png]The semantic meaning of a rule in the graph model

TripleSet

(Fred taller,John)
(John taller,Frank)
(Frank taller,Guido)

rule

{(?x taller,?y),

(?y.taller,?z)}
implies

(7 taller, ?2)}

Query: {(?who taller,Guido)}

closure

Closure graph

(Fred taller,John)
(John taller,Frank)
(Frank taller,Guido)
(Fred taller,Frank)
(Fred taller,Guido)
(John taller,Guido)

Answer: all subgraphs of the closure graph that match with the query.

Fig. 5.12. The closure G’ of a graph G with respect to the given rule. The possible answers are: (Frank,taller,Guido), (Fred,taller,Guido),(John,taller,Guido).

5.6.Unification

A triple consists of a subject, a property and an object. Unifying two triples means unifying the two subjects, the two properties and the two objects. A variable unifies with a URI or a literal. Two URI’s unify if they are the same. The result of a unification is a substitution. A substitution is either a list of tuples (variable, URI or Literal) or nothing (an empty list). The result of the unification of two triples is a substitutions (containing at most 3 tuples). Applying a substitution to a variable in a triple means replacing the variable with the URI or literal defined in the corresponding tuple.

An elementary substitution is represented by a tuple. When applying the substitution the variable in the triple is replaced with the resource. A substitution is a list of elementary substitutions.

type ElemSubst = (Var, Resource)

type Subst = [ElemSubst]

A nil substitution is an empty list.

nilsub :: Subst

nilsub = []

The unification of two statements is given in fig. 5.13.

The application of a substitution is given in fig. 5.14.

-- appESubstR applies an elementary substitution to a resource

appESubstR :: ElemSubst -> Resource -> Resource

appESubstR (v1, r) v2

 | (tvar v2) && (v1 == gvar v2) = r

 | otherwise = v2

-- applyESubstT applies an elementary substitution to a triple

appESubstT :: ElemSubst -> Triple -> Triple

appESubstT es TripleNil = TripleNil

appESubstT es t =

 Triple (appESubstR es (s t), appESubstR es (p t), appESubstR es (o t))

-- appESubstSt applies an elementary substitution to a statement

appESubstSt :: ElemSubst -> Statement -> Statement

appESubstSt es st = (map (appESubstT es) (ants st),

 map (appESubstT es) (cons st), prov st)

-- appSubst applies a substitution to a statement

appSubst :: Subst -> Statement -> Statement

appSubst [] st = st

appSubst (x:xs) st = appSubst xs (appESubstSt x st)

 -- appSubstTS applies a substitution to a triple store

appSubstTS :: Subst -> TS -> TS

appSubstTS subst ts = map (appSubst subst) ts

Fig.5.13. The application of a substitution. The Haskell source code uses the mini-language defined in RDFML.hs

In the application of a substitution the variables in the datastructures are replaced by resources whenever appropriate.

5.7.Matching two statements

The Haskell source code in fig. 5.14. gives the unification functions.

-- type Match = (Subst, Goals, BackStep)

-- type BackStep = (Statement, Statement)

-- unify two statements

unify :: Statement -> Statement -> Maybe Match

-- unify two statements

unify :: Statement -> Statement -> Maybe Match

unify st1@(_,_,s1) st2@(_,_,s2)

 | subst == [] = Nothing

 | (trule st1) && (trule st2) = Nothing

 | trule st1 = Just (subst, transTsSts (ants st1) s1, (st2,st1))

 | trule st2 = Just (subst, transTsSts (ants st2) s2, (st2,st1))

 | otherwise = Just (subst, [stnil], (st2,st1))

 where subst = unifyTsTs (cons st1) (cons st2)

-- unify two triplesets

unifyTsTs :: TripleSet -> TripleSet -> Subst

unifyTsTs ts1 ts2 = concat res1

 where res = elimNothing

 ([unifyTriples t1 t2|t1 <- ts1, t2 <- ts2])

 res1 = [sub |Just sub <- res]

-- transform a tripleset to a list of statements

transTsSts :: [Triple] -> String -> [Statement]

transTsSts ts s = [([],[t],s)|t <- ts]

unifyResource :: Resource -> Resource -> Maybe Subst

unifyResource r1 r2

|(tvar r1) && (tvar r2) && r1 == r2 =

 Just [(gvar r1, r2)]

 | tvar r1 = Just [(gvar r1, r2)]

 | tvar r2 = Just [(gvar r2, r1)]

| r1 == r1 = Just []

| otherwise = Nothing

Fig. 5.14. The unification of two statements

When matching a statement with a rule, the consequents of the rule are matched with the statement. This gives a substitution. This substitution is returned together with the antecedents of the rule and a tuples formed by the statement and the rule.

The antecedents of the rule will form new goals to be proven in the inference process.

Here is an example using a ternary predicate. Following is in Prolog:

Rule : sum(X,2,Y) :- sum(X,1,Z),sum(Z,1,Y).

Query: sum(1,2,X).
This is translated into triples:

Rule:

{(T$$$1,sum_1,?X),(T$$$1,sum_2,”1“),(T$$$1,sum_3,?Z),(T$$$2,sum_1,?Z),(T$$$2,sum_2,“1“),(T$$$2,sum_3,?Y)}log:implies {(T$$$3,sum_1,?X),(T$$$3,sum_2,”2”),(T$$$3,sum_3,?Y)}

Query:

{(T$$$1,sum_1,“1“),(T$$$1,sum_2, “2“),(T$$$1,sum_3,?X)}

The labels T$$$x are interpreted as existential variables, as well in the query as in the rule. However in an assertion they would be interpreted as a constant (URI).

The matching of the query with the rule gives the substitution:

{(T$$$1,T$$$3),(?X,”1”),(?Y,?X)}
and the goals returned are :

(T$$$1,sum_1,?X),(T$$$1,sum_2,”1“),(T$$$1,sum_3,?Z),(T$$$2,sum_1,?Z),(T$$$2,sum_2,“1“),(T$$$2,sum_3,?Y)
Proof of the correctness of this procedure:

Take a rule:

{T1,T2} implies {T3,T4}

where T1,T2,T3 and T4 are triples.

This rule is equivalent to the following two rules:

{T1,T2} implies {T3}

{T1,T2} implies {T4}

The proof in FOL is:

(T1(T2) ((T3(T4) (((T1(T2)((T3(T4) (((T1((T2) ((T3(T4)(
(((T1((T2) (T3) ((((T1((T2) (T4) (((T1(T2)(T3) (((T1(T2)(T4)

This implies that when matching a tripleset with the consequents of a rule, the tripleset does not have to match with all consequents.

5.8.The resolution process

The process I use has been built with a standard SLD inference engine as a model: the prolog engine included in the Hugs distribution [JONES]. The basic backtracking mechanism of my engine is the same. An anti-looping mechanism has been added. This is the mechanism of De Roo [DEROO]. A lazy implementation could be interesting; however this would not permit to do sub-queries.

The resolution process starts with a query. A single query is a tripleset. A query can be composed too: it then has more than one tripleset. This is equivalent to asking more than one question. The query will be matched against the triplesets of the initial graph G and against the rules. The triples of the query are entered into the goal list. A goal unifies with a rule when the triples of the tripleset unify with the consequents of the rule. The goal unifies with another tripleset if all triples in the tripleset unify with a triple of the other set. This can possibly be done in different ways. The result of the unification of two triplesets is a list of substitutions.

A tripleset may unify with many other triplesets or rules.

The unification with a tripleset from the graph G gives a substitution plus grounded triples (that contain no variables). No new goals are returned as subgraph matching with the original graph has occurred as this represents a leaf in the search tree.

The unification of a tripleset with a rule has as a result one or more triplesets. Each tripleset is a new goal. Each of these new goals will be the start of a new search path. One of these paths will be further investigated and after a unification this path will split again into other paths , stop with a failure or stop after a subgraph match with the given graph (producing a leaf in the search tree). The other paths will be pushed on a stack to be investigated later. These search paths form a tree. In a depth first search the search goes on following one path till a leaf of the tree is met. Then backtracking is done one level in the tree and the search goes on till a new leaf is met.

In a breadth first search for all paths one unification is done, one path after another. All paths are followed at the same time till, one by one, they reach an endpoint.

5.9.Structure of the engine

The inference engine : this is where the resolution is executed. An overview of the datastructures was already given in fig. 5.7.
There are three parts to this engine:

a) solve : the generation of new goals by selection of a goal from the goallist by some selection procedure and unifying this goal against all triplesets of the database thereby producing a set of alternative substitutions and triplesets. The process starts by adding the query to the goallist. If the goallist is empty a solution has been found and a backtrack is done in search of other solutions.

b) choose: add one of the alternative triplesets to the goallist; the other ones are pushed on the stack. Each set of alternative goals is pushed on the stack together with the current goallist and the current substitution. If solve did not generate any alternative goals there is a failure (unification did not succeed) and a backtrack must be done to get an alternative goal.

c) backtrack: an alternative goal is retrieved from the stack and added to the goallist. If the stack is empty the resolution process is finished. A failure occurs if for none of the alternatives a unification is possible; otherwise a set of solutions is given.

The algorithm in high-level imperative style programming:

goalList = all triplesets in the query.

do {

 while (not goalList = empty) {

 select a goal.

 If this goal is a new goal unify this goal against the database producing a set of alternative goals (= all the triplesets which unify with the selected goal) and eliminate this goal from the goalList

 else if the goal did not unify do a backtrack: retrieve a goalList from the stack

 else if the process is looping (the set of alternatives has occurred before): do a backtrack retrieve a goalList from the stack.

 else

 add one of this set of alternatives to the goalList and push the others on the stack

 } // while

 a solution has been found;

 retrieve an alternative from the stack

} until (stack == empty)

The goal which is selected from the goalList is the head of the goalList. The alternative which is chosen from the list of alternatives is the first alternative in the list.

-- RDFEngine version of the engine that delivers a proof

-- together with a solution

Some definitions:

-- type Stack = [(Subst, FactSet, MatchList)]

-- type FactSet = [Statement]

-- a backstep is a tuple (Fact,Statement)

-- it is a history of a successfull unification

-- type BackStep = (Statement, Statement)

-- type PathData = [(BackStep,Level)]

-- a forward step consists of a fact and a rule

-- type ForStep = (Statement,Statement)

-- a match is a triple (Subst, Goals, BackStep)

-- type Match = (Subst, Goals, BackStep)

-- type MatchList = [Match]

-- a resolution path is a list of backsteps

-- type ResolutionPath = [BackStep]

-- a closure is a list of forward steps

-- type Closure = [ForStep]

-- a solution contains a substitution and a closure

-- type Solution = (Subst,Closure)

-- the closure path permits to verify the solution given the initial triple store.

-- type Level = Int

-- the level is kept together with the resolution path for backtracking

-- type Proof = [RDFGRaph] -> Query -> [(Closure,Solution)]

type InfData = (Array Int RDFGraph,Goals,Stack,Level,

 PathData,Subst,[Solution],Trace)

-- type PathData = [(BackStep,Level)]

-- perform an inference step

-- The structure InfData contains everything which is needed for

-- an inference step

infStep :: InfData -> InfData

infStep infdata = solve infdata

solve inf

 | goals == [] = backtrack inf3

| otherwise = choose inf2

where goals@(g:gs) = ggoals inf

 inf1 = sgoals inf gs

 level = glev inf

 graphs = ggraphs inf

 matchlist = alts graphs level g

 inf2 = smatches inf1 matchlist

 pathdata = gpdata inf

 backs = [ba|(ba,_) <- pathdata]

 subst = gsubst inf

 sols1 = (subst, convbl (reverse backs) subst):

 gsols inf

 inf3 = ssols inf sols1

backtrack inf

 | stack == [] = inf

 | otherwise = choose inf6

 where stack = gstack inf

 ((subst,gs,ms):sts) = stack

 pathdata = gpdata inf

 level = glev inf

 newpdata = reduce pathdata (level-1)

 inf1 = sstack inf sts

 inf2 = spdata inf1 newpdata

 inf3 = slev inf2 (level-1)

 inf4 = sgoals inf3 gs

 inf5 = ssubst inf4 subst

 inf6 = smatches inf5 ms

choose inf

 | matchlist == [] = backtrack inf

 -- anti-looping controle

 | ba `stepIn` pathdata = backtrack inf

 | bool = inf4

 | otherwise = inf5

 where matchlist = gmatches inf

 ((subst1,fs,ba):ms) = matchlist

 subst = gsubst inf

 gs = ggoals inf

 stack1 = (subst,gs,ms):gstack inf

 (f:fss) = fs

 bool = f == ([],[],"0")

 pathdata = gpdata inf

 level = glev inf

 newpdata = (ba,level+1):pathdata

 inf1 = sstack inf stack1

 inf2 = slev inf1 (level+1)

 inf3 = spdata inf2 newpdata

 inf4 = ssubst inf3 (subst ++ subst1)

 inf5 = sgoals inf4 (fs ++ gs)

-- get the alternatives, the substitutions and the backwards rule applications.

-- getMatching gets all the statements with the same property or

-- a variable property.

-- renameSet renames the variables for the substitution process

alts :: Array Int RDFGraph -> Level -> Fact -> MatchList

alts ts n g = matching (renameSet (getMatching ts g) n) g

Fig. 5.15. The inference engine. The source code uses the mini-languages defined in RDFML.hs, InfML.hs and RDFData.hs. The constants are mainly defined in RDFData.hs.

5.10.The backtracking resolution mechanism in Haskell

Fig. 5.15 gives the source code of the engine.

The mechanism which is followed is similar to SLD-resolution: Selection, Linear, Definite [CS]. There is a selection function for triplesets; a quit simple one given the fact that the first in the list is selected. This is one of the points where optimization is possible namely by using another selection function. In my engine however the rules are placed after the facts thereby realizing a certain optimization: the preference is given to a match with facts. This has as a consequence that the first solution might be found more rapidly .

Linear is explained here below.

In prolog the definition of a definite sentence is a sentence that has exactly one positive literal in each clause and the unification is done with this literal. In my engine the clauses can have more than one consequent and thus are not necessarily definite, but they are in most examples.

A resolution strategy selects the clauses (here triplesets and rules) that are used for the unification process.

Following resolution strategies are respected by an SLD-engine:

· depth first: each alternative is investigated until a unification failure occurs or until a solution is found. The alternative to depth first is breadth first.

· set of support: at least one parent clause must be from the negation of the goal or one of the “descendents” of such a goal clause. This is a complete procedure that gives a goal directed character to the search. unit resolution: at least one parent clause must be a “unit clause” i.e. a clause containing a single literal. As I do subgraph matching this is not the case for my engine.

· input resolution: at least one parent comes from the set of original clauses (from the axioms and the negation of the goals). This is not complete in general but complete for Horn clause KB's.

· linear resolution: one of the parents is selected with set of support strategy and the other parent is selected by the input strategy. This is used in my engine at the level of triplesets (a tripleset = a clause).

· ordered resolution: this is the way prolog operates; the clauses are treated from the first to the last and each single clause is unified from left to right.

As already said I put the rules behind the facts.

5.11.The closure path.

5.11.1.Problem

In the following paragraphs I develop a notation that enables to make a comparison between forward reasoning (the making of a closure) and backwards reasoning (the resolution process). The meaning of a rule and what represents a solution to a query are defined using forward reasoning. Therefore the properties of the backward reasoning process are proved by comparing with the forward reasoning process.

5.11.2. The closure process

The original graph that is given will be called G. The closure graph resulting from the application of the set of rules will be called G’ (see further). A rule will be indicated by a miniscule plus an italic index. A subgraph of G or another graph (query or other) will be indicated by a miniscule and an index.

A rule is applied to a graph G; the antecedents of the rule are matched with one or more subgraphs of G to yield a consequent that is added to the graph G. The consequent must be grounded for the graph to stay a valid RDF graph. This means that the consequent can not contain variables that are not in the antecedents.

5.11.3. Notation

A closure path is a finite sequence of triples (not to be confused with RDF triples):

(g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn)

where (g1,r1,c1) means: the rule r1 is applied to the subgraph (tripleset) g1 to produce the subgraph (tripleset) c1 that is added to the graph. A closure path represents a part of the closure process. This is not necessarily the full closure process though the full process is represented also by a closure path.

The indices in gi,ri,ci represent sequence numbers but not the identification of the rules and subgraphs. So e.g. r7 could be the same rule as r11.I introduce this notation to be able to compare closure paths and resolution paths (defined further) for which purpose I do not need to know the identification of the rules and subgraphs.

It is important to remark that all triples in the triplesets (subgraphs) are grounded i.e. do not contain variables. This imposes the restriction on the rules that the consequents may not contains variables that are absent in the antecedents.

5.11.4. Examples

In fig.5.17 rule 1 {(?x, taller, ?y),(?y, taller, ?z)} implies {(?x, taller, ?z)} matches with the subgraph {(John,taller,Frank),(Frank,taller,Guido)}
to produce the subgraph {(John,taller,Guido)} and the substitution ((x,John),(y,Frank),(z,Guido))

In the closure process the subgraph {(John,taller,Guido)} is added to to the original graph.

Fig. 5.16 , 5.17 and 5.18 illustrate the closure paths.

In fig. 5.18 the application of rule 1 and then rule 2 gives the closure path (I do not write completely the rules for brevity):

({(John,taller,Frank),(Frank,taller,Guido)},rule 1, {(John,taller,Guido)}),

({(John,taller,Guido)}, rule 2,{(Guido,shorter,John)})

Two triples are added to produce the closure graph:

(John,taller,Guido) and (Guido,shorter,John).

[image: image8.png]rule r1

resolution patti” closure path
resolution path

no closure path I I
| I
rule'r2 rule r3 | |
i

I
I

i
|

i

N

solution failure

Fig. 5.16.The resolution process with indication of resolution and closure paths.

[image: image9.png]The semantic meaning of a rul

TripleSet

(Fred.taller,John)
(John,taller,Frank)
(Frankstaller, Guido)

Rule

@ taller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

Query:who taller Guido?

closure ;

the graph model.

closure graph

(Fred.taller,John)
(John,taller,Frank)
(Frankitaller,Guido)
(Fred.taller,Frank)
(Fred.taller, Guido)
(John,taller,Guido)

Answer: all subgraphs of the closure graph that match with the query.

Fig.5.17. The closure of a graph G

[image: image10.png]TripleSet

(Fred.taller,Guido)
(John,taller,Frank)
(Frankstaller, Guido)

Rules

{@xtaller,2y),
@y.aller22)}

{@xtaller,?2)}

(@ taller,2y)}
implies
(y.shorter,?x)}

closure ;

closure graph

(Fred.taller,John)
(John,taller,Frank)
(Frankitaller,Guido)
(Fred.taller,Frank)
(Fred.taller, Guido)
(John,taller, Guido)
(Guido,shorter,Frank)
(Guido,shorter,John)
(Guido,shorter,Fred)
(Frank,shorter,John)
(Frank,shorter,Fred)
(John,shorter,Fred)

(x,shorter,?y),
y.shorter, 2]}
implies

{(?,shorter,?2)}

: (Guido,shorter,John).

Fig.5.18. Two ways to deduce the triple (Guido,shorter,John).

5.12.The resolution path.
5.12.1. The process

In the resolution process the query is unified with the database giving alternatives. An alternative is a tripleset and a substitutionlist. One tripleset becomes a goal. This goal is then unified etc… When a unification fails a backtrack is done and the process restarts with a previous goal. This gives in a resolution path a series of goals: query, goal1, goal2,… each goal being a subgraph. If the last goal is empty then a solution has been found; the solution exists of a substitutionlist. When this substitutionlist is applied to the series of goals: query, goal1, goal2, … of the resolution path all subgraphs in the resolution path will be grounded i.e. they will not any more contain any variables (otherwise the last goal cannot be empty). The reverse of such a grounded resolution path is a closure path. I will come back on this. This is illustrated in fig. 5.16.

A subgraph g1 (a goal) unifies with the consequents of a rule with result a substitution s and a subgraph g1’ consisting of the antecedents of the rule

or

g1 is unified with a connected subgraph of G with result a substitution s1 and no subgraph in return. In this case I will assume an identity rule has been applied i.e. a rule that transforms a subgraph into the same subgraph with the variables instantiated. An identity rule is indicated with rid.

The application of a rule in the resolution process is the reverse of the application in the closure process. In the closure process the antecedents of the rules are matched with a subgraph and replaced with the consequents; in the resolution process the consequents of the rule are matched with a subgraph and replaced with the antecedents.

5.12.2. Notation

A resolution path is a finite sequence of triples (not to be confounded with RDF triples):

(c1,r1,g1), (c2,r2,g2), ….,(cn,rn,gn)
(ci,ri,gi) means: a rule ri is applied to subgraph ci to produce subgraph gi. Contrary to what happens in a closure path gi can still contain variables. Associated with each triple (ci,ri,gi) is a substitution si.

The accumulated list of substitutions [si] must be applied to all triplesets that are part of the path. This is very important.

5.12.3. Example

An example from fig.5.19:

The application of rule 2 to the query {(?who,shorter,John)} gives the substitution ((?x,John),(?y,Frank)) and the antecedents {(Frank,shorter,John)}.
An example of closure path and resolution path as they were produced by a trace of the engine can be found in annexe 2.

[image: image11.png]TripleSet

(Fred.taller,Guido)
(John,taller,Frank)
(Frankstaller, Guido)

Rules

Resolution paths Query: 2who shorter John.

Query: (Pwho,shorter,John)
Rule2: ((Pwho,?y),(?x,John)) > (Johntaller,2y)
(John,taller,?y) matches with
(John,taller,Frank) giving the substi
@y.Frank)

The sol 3

(@who,Frank)

{@xtaller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

(Px.taller,2y)}

(y.shorter,?x)}

(x,shorter,?y),
@y,shorter,?2)}
implies

{(?,shorter,?2)}

The resolution path

((Frankshorter,John), rule 2, (John,taller,Frank),
((John,taller,Frank), identity rule, (John,taller,Frank)

Note that the cumulated substitutions have been applied so
that all triples in the resolution path have become grounded.

Fig.5.19. Example of a resolution path.

5.13.Variable renaming

There are two reasons why variables have to be renamed when applying the resolution process (fig.5.20) [AIT]:

1) Different names for the variables in different rules. Though the syntaxis permits to define the rules using the same variables the inference process cannot work with this. Rule one might give a substitution (?x, Frank) and later on in the resolution process rule two might give a substitution (?x,John). So by what has ?x to be replaced?

 It is possible to program the resolution process without this renaming but I think it’s a lot more complicated than renaming the variables in each rule.

2) Take the rule:

{(?x1,taller, ?y1),(?y1,taller, ?z1)} implies {(?x1,taller, ?z1)}

 At one moment (John,taller,Fred) matches with (?x1,taller,?z1) giving substitutions:

 ((?x1, John),(?z1, Fred)).

 Later in the process (Fred,taller,Guido) matches with (?x1,taller,?z1) giving substitutions:

 ((?x1, Fred),(?z1, Guido)).

So now, by what is ?x1 replaced? Or ?z1?

This has as a consequence that the variables must receive a level numbering where each step in the resolution process is attributed a level number.

The substitutions above then become e.g.

((1_?x1, John),(1_?x1, Fred))

and

((2_?x1 , Fred),(2_?z1, Guido))

This numbering is mostly done by prefixing with a number as done above. The variables can be renumbered in the database but it is more efficient to do it on a copy of the rule before the unification process.

In some cases this renumbering has to be undone e.g. when comparing goals.

The goals:

(Fred, taller, 1_?x1).

(Fred, taller, 2_?x1).

are really the same goals: they represent the same query: all people shorter than Fred.

[image: image12.png]TripleSet

(Fred.taller,Guido) Variable Renaming
(John,taller,Frank)
(Frankitaller,Guido) | Separate variable names for rules.

Rule 1: {(x1,taller,2y1),(2y1 taller,2z1)} implies {(?x1taller,221)}
Rule 2: {(?x2,taller,?y2)} implies {(?y2,shorter,?x2)}
Rule 3: {(?x3,shorter,2y3),(?y3,shorter,223)} implies {(?x3,shorter,223)}

Rules

Level numbering:

Match (John,shorter,Fred) wit
(1_2y2,John), (1_?x2,Fred)

{@xtaller,2y),
@y.taller,?2)}
implies

{@xtaller,?2)}

rule 2:

Match (Guido,shorter,Frank) with rule 2 in the next

(% aller,2y)} resolution step:
implies @_?y2,Guido),2_?x2,Frank)
{2y.shorter,x)}
(@xshorter,2y), | 1.7¥2 and 2_2y2 are really different variablest But:
3 ‘73"7_"""""?") the goals: (Guido,taller,1_?y1) and (Guido,taller,2_?y1) are
plies really the same goals (it does not matter which variable)!!

{(?,shorter,?2)}

Fig. 5.20. Example of variable renaming.

5.14.Comparison of resolution and closure paths

5.14.1. Introduction

Rules, query and solution have been defined using forward reasoning. However, this thesis is about a backwards reasoning engine. In order then to prove the exactness of the followed procedure the connection between backwards and forwards reasoning must be established.

5.14.2. Elaboration

There is clearly a likeness between closure paths and resolution paths. As well for a closure path as for a resolution path there is a sequence of triples (x1,r1,y1) where xi and yi are subgraphs and ri is a rule. In fact parts of the closure process are done in reverse in the resolution process.

I want to stress here the fact that I define closure paths and resolution paths with the complete accumulated substitution applied to all triplesets that are part of the path.

Question: is it possible to find criteria such that steps in the resolution process can be judged to be valid based on (steps in) the closure process?

If a rule is applied in the resolution process to a triple set and one of the triples is replaced by the antecedents then schematically:

(c, as)

where c represent the consequent and as the antecedents.

In the closure process there might be a step:

(as, c) where c is generated by the subgraph as.

A closure path generates a solution when the query matches with a subgraph of the closure produced by the closure path.

I will present some lemmas here with explanations and afterwards I will present a complete theory.

Final Path Lemma. The reverse of a final path is a closure path. All final paths are complete and valid.

I will explain the first part here and the second part later.

A final resolution path is the resolution path when the goal list has been emptied and a solution has been found.

Take a resolution path (q,r1,g1). Thus the query matches once with rule r1 to generate subgraph g1 who matches with graph G. This corresponds to the closure path: (g1,r1,q) where q in the closure G’ is generated by rule r1.

Example: Graph G :

{(chimp, subClassOf, monkeys),(monkeys, subClassOf, mammalia)}

And the subclassof rule:

{(?c1, subClassOf,?c2),(?c2, subClassOf,?c3)} implies {(?c1, subClassOf,? c3)}

- The closure generates using the rule:

(chimp, subClassOf, mammalia)

 and adds this to the database.

- The query:

{(chimp, subClassOf, ?who)}

will generate using the rule :

{(chimp, subClassOf,?c2),(?c2, subClassOf,?c3)}

and this matches with the database where ?c2 is substituted by monkeys and ?c3 is substituted by mammalia.
Proof:

Take the resolution path:

(c1,r1,g1), (c2,r2,g2), … (cn-1,rn-1,gn-1),(cn,rn,gn)

This path corresponds to a sequence of goals in the resolution process:
c1,c2, ….,cn-1,cn. One moment or another during the process these goals are in the goallist. Goals generate new goals or are taken from the goallist when they are grounded. This means that if the goallist is empty all variables must have been substituted by URI’s or literals. But perhaps a temporary variable could exist in the sequence i.e. a variable that appears in the antecedents of a rule x, also in the consequents of a rule y but that has disappeared in the antecedents of rule y. However this means that there is a variable in the consequents of rule y that is not present in the antecedents what is not permitted.

Solution Lemma I: A solution corresponds to an empty closure path (when the query matches directly with the database) or to a minimal closure path.

Note: a minimal closure path with respect to a query is a closure path with the property that the graph produced by the path matches with the query and that it is not possible to diminish the length of the path i.e. to take a rule away.

Proof: This follows directly from the definition of a solution as a subgraph of the closure graph. There are two possibilities: the triples of a solution either belong to the graph G or are generated by the closure process. If all triples belong to G then the closure path is empty. If not there is a closure path that generates the triples that do not belong to G.

It is clear that there can be more than one closure path that generates a solution. One must only consider applying rules in a different sequence. As the reverse of the closure path is a final resolution path it is clear that solutions can be duplicated during the resolution process.

Solution Lemma II: be C the set of all closure paths that generate solutions. Then there exist matching resolution paths that generate the same solutions.

Proof: Be (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn) a closure path that generates a solution.

Let (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) be the corresponding resolution path.

The applied rules are called r1, r2, …, rn.

rn applied to cn gives gn in the resolution path. Some of the triples of gn can match with G, others will be proved by further inferencing (for instance one of them might match with the tripleset cn-1).When cn was generated in the closure it was deduced from gn. The triples of gn can be part of G or they were derived with rules r1,r2, …rn. If they were derived then the resolution process will use those rules to inference them in the other direction. If a triple is part of G in the resolution process it will be directly matched with a corresponding triple from the graph G.

The resolution path is a valid resolution path if after substitution the query is grounded or the resolution path can be extended by adding steps till the query is grounded.

The resolution path is invalid when it is not valid.

The resolution path is complete when after substitution all triples in it are grounded.

Final Path Lemma. The reverse of a final path is a closure path. All final paths are complete and valid.

I give now the proof of the second part.

Proof: Be (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) a final resolution path. I already proved in the first part that it is grounded because all closure paths are grounded. g1 is a subgraph of G (if not, the triple (c1,r1,g1) should be followed by another one). cn is necessarily a triple of the query. The other triples of the query match with the graph G or match with triples of ci, cj etc.. (consequents of a rule). The reverse is a closure path. However this closure path generates all triples of the query that did not match directly with the graph G. Thus it generates a solution.

An example of closure path and resolution path as they were produced by a trace of the engine can be found in annexe 2.

5.15.Anti-looping technique

5.15.1. Introduction

The inference engine is looping whenever a certain subgoal keeps returning ad infinitum in the resolution process.

There are two reasons why an anti-looping technique is needed:

1) loopings are inherent with recursive rules. An example of such a rule:

{(?a, subClassOf, ?b), (?b, subClassOf, ?c)} implies {(?a, subClassOf, ?b)}

These rules occur quit often especially when working with an ontology.

In fact, it is not even possile to seriously test an inference engine for the Semantic Web without an anti-looping mechanism. A lot of testcases use indeed recursive rules.

2) an inference engine for the Semantic Web will often have to handle rules coming from the most diverse origins. Some of these rules can cause looping of the engine. However, because everything is meant to be done without human intervention, looping is a bad characteristic. It is better that the engine finishes without result, then eventually e.g. a forward reasoning engine can be tried.

5.15.2. Elaboration

The technique described here stems from an oral communication of De Roo [DEROO]. Given a resolution path: (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1). Suppose the goal c2 matches with the rule r2 to generate the goal g2. When that goal is identical to one of the goals already present in the resolution path and generated also by the same rule then a loop may exist where the goals will keep coming back in the path.

Take the resolution path:

(cn,rn,gn), …(cx,rx,gx) …(cy,ry,gy)… (c2,r2,g2),(c1,r1,g1)

where the triples (cx,rx,gx),(cy,ry,gy) and (c2,r2,g2) are equal (recall that the numbers are sequence numbers and not identification numbers).

I call, by definition, a looping path a path in which the same triple (cx,rx,gx) occurs twice.

The anti-looping technique consists in failing such a path from the moment a triple (cx,rx,gx) comes back for the second time. These triples can still contain variables so the level numbering has to be stripped of the variables before the comparison.

No solutions are excluded by this technique as shown by the solution lemma II. Indeed the reverse of a looping path is not a closure path. But there exists closure paths whose reverse is a resolution path containing a solution. So all solutions can still be found by finding those paths.

In my engine I control whether the combination antecedents-rule returns which is sufficient because the consequent is determined then.

In the implementation a list of antecedents is kept. This list must keep track of the current resolution level; when backtracking goals with higher level than the current must be token away.

That this mechanism stops all looping can best be shown by showing that it limits the maximum depth of the resolution process, however without excluding solutions.

When a goal matches with the consequent of rule r producing the antecedents as, the tuple (as, r) is entered into a list, called the oldgoals list. Whenever this tuple (as,r) comes back in the resolution path backtracking is done. This implies that in the oldgoals list no duplicate entries can exist. The number of possible entries in the list is limited to all possible combinations (as, r) that are finite whenever the closure graph G’ is finite. Let this limit be called maxG. Then the maximum resolution depth is maxR = maxG + maxT where maxT is the number of grounded triples in the query and maxG are all possible combinations (as, r). Indeed, at each step in the resolution process either a rule is used generating a tuple (as,r) or a goal(subgraph) is matched with the graph G.

When the resolution depth reaches maxR all possible combinations (as,r) are in the oldgoals list; so no rule can produce anymore a couple (as,r) that is not rejected by the anti-looping technique.

In the oldgoals list all triples from the closure graph G’ will be present because all possible combinations of goals and rules have been tried. This implies also that all solutions will be found before this maximum depth is reached.

Why does this technique not exclude solutions?

Take a closure path (as1, r1,c1) … (asn,rn,cn) generating a solution . No rule will be applied two times to the same subgraph generating the same consequent to be added to the closure. Thus no asx is equal to asy. The reverse of a closure path is a resolution path. This proofs that there exist resolution paths generating a solution without twice generating the same tuple (as,r).

A maximal limit can be calculated for maxG.

Be atot the total number of antecedents generated by all rules and ntot is the total number of labels and variables. Each antecedent is a triple and can exist maximally in ntot**3 versions. If there are n1 grounded triples in the query this gives for the limit of maxG: (ntot**3) **(atot + n1).

This can easily be a very large number and often stack overflows will occur before this number is reached.

5.15.3.Failure

A failure (i.e. when a goal does not unify with facts or with a rule) does never exclude solutions. Indeed the reverse of a failure resolution path can never be a closure path. Indeed the last triple set of the failure path is not included in the closure. If it were its triples should either match with a fact or with the consequent of a rule.

5.15.4.Completeness

Each solution found in the resolution process corresponds to a resolution path. Be S the set of all those paths. Be S1 the set of the reverse paths which are valid closure paths. The set S will be complete when the set S1 contains all possible closure paths generating the solution. This is the case in a resolution process that uses depth first search as all possible combinations of the goal with the facts and the rules of the database are tried.

5.15.5.Monotonicity

Suppose there is a database, a query and an answer to the query. Then another database is merged with the first. The query is now posed again. What if the first answer is not a part of the second answer?

In this framework monotonicity means that when the query is posed again after the merge of databases, the first answer will be a subset of the second answer.

The above definition of databases, rules, solutions and queries imply monotonicity. Indeed all the facts and rules of the first database are still present so that all the same triples will be added during the closure process and the query will match with the same subgraphs.

Nevertheless, some strange results could result.

Suppose a tripleset:

{(blood,color,”red”)}

and a query:

{(blood,color,?what)}

gives the answer:

{(blood,color,”red”)}.

Now the tripleset:

{(blood,color,”yellow”)}

is added. The same query now gives two answers:

{(blood,color,”red”)} and {(blood,color,”yellow”)}.
However this is normal as nobody did ‘tell’ the computer that blood cannot be yellow (it could be blue however).

To enforce this, extensions like OWL are necessary where a restriction is put on the property ‘color’ in relation with the subject ‘blood’.

In the now following formal part definitions are given and the lemmas above and others are proved.

Fig. 5.21. gives an overview of the lemmas and the most important points proved by them.

[image: image13.png]Lemmas

Resolution Lemma
Closure Lemma
Final Path Lemma
g Lemma |
a Lemma Il

Duplication Lemma
Failure Lemma

Solution Lemma IV
Completeness Lemma
Infinite Looping Lemma
Monotonicity Lemma

Essential points

1) Proof of the validity of the used resolution
process

2) Proof of the validity of the anti-looping
technique:

a) all loopings are stopped

b) no solutions are lost by doing so

3) Proof of completeness

4) No use of RDF Model Theory or First Order
logic; the reasoning is graph-theoretical.

5) Generally applicable to planary graphs
6) Monoto

Fig.5.21. Overview of the lemmas.

5.16.A formal theory of graph resolution

5.16.1. Introduction

In this section I present more formally as a series of definitions and lemmas what has been explained more informally in the preceding sections.

5.16.2.Definitions

A triple consists of two labeled nodes and a labeled arc.

A tripleset is a set of triples.

A graph is a set of triplesets.

A rule consists of antecedents and a consequent. The antecedents are a tripleset; the consequent is a triple.

Applying a rule r to a graph G in the closure process is the process of unifying the antecedents with all possible triples of the graph G while propagating the substitutions. For each successful unification the consequents of the rule is added to the graph with its variables substituted.

Applying a rule r to a subgraph g in the resolution process is the process of unifying the consequents with all possible triples of g while propagating the substitutions. For each successful unification the antecedents of the rule are added to the goallist of the resolution process (see the explanation of the resolution process).

A rule r is valid with respect to the graph G if its closure G’ with respect to the graph G is a valid graph.

A graph G is valid if all its elements are triples.

The graph G entails the graph T using the rule R if T is a subgraph of the closure G’ of the graph G with respect to the rule R.

The closure G’ of a graph G with respect to a ruleset R is the result of the application of the rules of the ruleset R to the graph G giving intermediate graphs Gi till no more new triples can be generated. A graph may not contain duplicate triples.

The closure G’ of a graph G with respect to a closure path is the resulting graph G’ consisting of G with all triples added generated by the closure path.

A solution to a query with respect to a graph G and a ruleset R is a subgraph of the closure G’ that unifies with the query.

A solution set is the set of of all possible solutions.

A closure path is a sequence of triples (gi,ri,ci) where gi is a subgraph of a graph Gi derived from the given graph G, ri is a rule and ci are the consequents of the rule with the substitution si.si is the substitution obtained trough matching a subgraph of Gi with the antecedents of the rule ri.The tripleset ci is added to Gi to produce the graph Gj. All triples in a closure path are grounded.

A minimal closure path with respect to a query is a closure path with the property that the graph produced by the path matches with the query and that it is not possible to diminish the length of the path i.e. to take a triple away.

The graph generated by a closure path consists of the graph G with all triples added generated by the rules used for generating the closure path.

A closure path generates a solution when the query matches with a subgraph of the graph generated by the closure path.

The reverse path of a closure path (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn) is:

(cn,rn,gn), … (c2,r2,g2),(c1,r1,g1).

A resolution path is a sequence of triples (ci,ri,gi) where ci is subgraph that matches with the consequents of the rule ri to generate gi and a substitution si
. However in the resolution path the accumulated substitutions [si] are applied to all triplesets in the path.

A valid resolution path is a path where the triples of the query become grounded in the path after substitution or match with the graph G; or the resolution process can be further applied to the path so that finally a path is obtained that contains a solution. All resolution paths that are not valid are invalid resolution paths. The resolution path is incomplete if after substitution the triple sets of the path still contain variables. The resolution path is complete when, after substitution, all triple sets in the path are grounded.

A final resolution path is the path that rests after the goallist in the (depth first search) resolution process has been emptied. The path then consists of all the rule applications applied during the resolution process.

A looping resolution path is a path with a recurring triple in the sequence (cn,rn,gn), …(cx,rx,gx) …(cy,ry,gy)… (c2,r2,g2),(c1,r1,g1) i.e. (cx,rx,gx) is equal to some (cy,ry,gy). The comparison is done after stripping of the level numbering.

The resolution process is the building of resolution paths. A depth first search resolution process based on backtracking is explained elsewhere in the text.

5.16.3. Lemmas

Resolution Lemma. There are three possible resolution paths:

1) a looping path

2) a path that stops and generates a solution

3) a path that stops and is a failure

Proof. Obvious.

Closure lemma. The reverse of a closure path is a valid, complete and final resolution path for a certain set of queries.

Proof. Take a closure path: (g1,r1,c1),(g2,r2,c2), ….,(gn,rn,cn). This closure path adds the triplesets c1, …,cn to the graph. All queries that match with these triples and/or triples from the graph G will be proved by the reverse path:

(cn,rn,gn), … (c2,r2,g2),(c1,r1,g1). The reverse path is complete because all closure paths are complete. It is final because the triple set g1 is a subgraph of the graph G (it is the starting point of a closure path). Take now a query as defined above: the triples of the query that are in G do of course match directly with the graph. The other ones are consequents in the closure path and thus also in the resolution path. So they will finally match or with other consequents or with triples from G.

Final Path Lemma: The reverse of a final path is a closure path. All final paths are complete and valid.

Proof:A final resolution path is the resolution path when the goal list has been emptied and a solution has been found.

Take the resolution path:

(c1,r1,g1), (c2,r2,g2), … (cn-1,rn-1,gn-1),(cn,rn,gn)

This path corresponds to a sequence of goals in the resolution process:
c1,c2, ….,cn-1,cn. One moment or another during the process these goals are in the goallist. Goals generate new goals or are taken from the goallist when they are grounded. This means that if the goallist is empty all variables must have been substituted by URI’s or literals. But perhaps a temporary variable could exist in the sequence i.e. a variable that appears in the antecedents of a rule x, also in the consequents of a rule y but that has disappeared in the antecedents of rule y. However this means that there is a variable in the consequents of rule y that is not present in the antecedents what is not permitted.

Be (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) a final resolution path. I already proved in the first part that it is grounded because all closure paths are grounded. g1 is a subgraph of G (if not, the triple (c1,r1,g1) should be followed by another one). cn matches necessarily with the query. The other triples of the query match with the graph G or match with triples of ci, cj etc.. (consequents of a rule). The reverse is a closure path. However this closure path generates all triples of the query that did not match directly with the graph G. Thus it generates a solution.

Looping Lemma I. If a looping resolution path contains a solution, there exists another non looping resolution path that contains the same solution.

Proof. All solutions correspond to closure paths in the closure graph G’ (by definition). The reverse of such a closure path is always a valid resolution path and is non-looping.

Looping Lemma II. Whenever the resolution process is looping, this is caused by a looping path if the closure of the graph G is not infinite.

Proof. Looping means in the first place that there is never a failure i.e. a triple or tripleset that fails to match because then the path is a failure path and backtracking occurs. It means also triples continue to match in an infinite series.

There are two sublemmas here:

Sublemma 1. In a looping process at least one goal should return in the goallist.

Proof.Can the number of goals be infinite? There is a finite number of triples in G, a finite number of triples that can be generated and a finite number of variables. This is the case because the closure is not infinite. So the answer is no. Thus if the process loops (ad infinitum) there is a goal that must return at a certain moment.

Sublemma 2. In a looping process a sequence (rule x) goal x must return. Indeed the numbers of rules is not infinite; neither is the number of goals; if the same goal returns infinitly, sooner or later it must return as a deduction of the same rule x.

Infnite Looping Path Lemma. If the closure graph G’ is not infinite and the resolution process generates an infinite number of looping paths then this generation will be stopped by the anti-looping technique and the resolution process will terminate in a finite time.

Proof. The finiteness of the closure graph implies that the number of labels and arcs is finite too.

Suppose that a certain goal generates an infinite number of looping paths.

This implies that the breadth of the resolution tree has to grow infinitely. It cannot grow infinitely in one step (nor in a finite number of steps) because each goal only generates an finite number of children (the database is not infinite). This implies that also the depth of the resolution tree has to grow infinitely. This implies that the level of the resolution process grows infinitely and also then the number of entries in the oldgoals list.

Each growth of the depth produces new entries in the oldgoals list. (In this list each goal-rule combination is new because when it is not, a backtrack is done by the anti-looping mechanism). In fact with each increase in the resolution level an entry is added to the oldgoals list.

Then at some point the list of oldgoals will contain all possible rule-goals combinations and the further expansion is stopped.

Formulated otherwise, for an infinite number of looping paths to be materialized in the resolution process the oldgoals list should grow infinitely but this is not possible.

Addendum: be maxG the maximum number of combinations (goal, rule). Then no branch of the resolution tree will attain a level deeper than maxG. Indeed at each increase in the level a new combination is added to the oldgoals list.

Infinite Lemma. For a closure to generate an infinite closure graph G’ it is necessary that at least one rule adds new labels to the vocabulary of the graph.

Proof. Example: {:a log:math :n } ({:a log:math :n+1). The consequent generated by this rule is each time different. So the closure graph will be infinite. Suppose the initial graph is: :a log:math :0. So the rule will generate the sequence of natural numbers.

If no rule generates new labels then the number of labels and thus of arcs and nodes in the graph is finite and so are the possible ways of combining them.

Duplication Lemma. A solution to a query can be generated by two different valid resolution paths. It is not necessary that there is a cycle in the graph G’.

Proof. Be (c1,r1,g1), (c2,r2,g2), (c3,r3,g3) and (c1,r1,g1), (c3,r3,g3), (c2,r2,g2) two resolution paths.Let the query q be equal to c1. Let g1 consist of c2 and c3 and let g2 and g3 be subgraphs of G. Then both paths are final paths and thus valid (Final Path Lemma).

Failure Lemma. If the current goal of a resolution path (the last triple set of the path) can not be unified with a rule or facts in the database, it can have a solution, but this solution can also be found in a final path.

Proof. This is the same as for the looping lemma with the addition that the reverse of a failure path cannot be a closure path as the last triple set is not in the graph G (otherwise there would be no failure).

Substitution Lemma I. When a variable matches with a URI the first item in the substitution tuple needs to be the variable.

Proof. 1) The variable originates from the query.

a) The triple in question matches with a triple from the graph G. Obvious, because a subgraph matching is being done.

b) The variable matches with a ground atom from a rule.

 Suppose this happens in the resolution path when using rule r1:

 (cn,rn,gn), … (c2,r2,g2),(c1,r1,g1)
 The purpose is to find a closure path:

 (g1,r1,c1),… , (gx,rx,cx),… ,(gn, rn,cn) where all atoms are grounded.

 When rule r1 is used in the closure the ground atom is part of the closure graph, thus in the resolution process , in order to find a subgraph of a closure graph, the variable has to be substituted by the ground atom.

2) A ground atom from the query matches with a variable from a rule. Again, the search is for a closure path that leads to a closure graph that contains the query as a subgraph. Suppose a series of substitutions:

 (v1, a1) (v2,a2) where a1 originates from the query corresponding to a resolution path: (c1,r1,g1) ,(c2,r2,g2), (c3,r3,g3). Wherever v1 occurs it will be replaced by a1. If it matches with another variable this variable will be replaced by a1 too. Finally it will match with a ground term from G’. This corresponds to a closure path where in a sequence of substitutions from rules each variable becomes replaced by a1, an atom of G’.

3) A ground atom from a rule matches with a variable from a rule or the inverse. These cases are exactly the same as the cases where the ground atom or the variable originates from the query.

Substitution Lemma II. When two variables match, the variable from the query or goal needs to be ordered first in the tuple.

Proof. In a chain of variable substitution the first variable substitution will start with a variable from the query or a goal. The case for a goal is similar to the case for a query. Be a series of substitutions:

(v1,v2) (v2,vx) … (vx,a) where a is a grounded atom.

By applying this substitution to the resolution path all the variables will become equal to a. This corresponds to what happens in the closure path where the ground atom a will replace all the variables in the rules.

Solution Lemma I: A solution corresponds to an empty closure path (when the query matches directly with the database) or to one or more minimal closure paths.

Proof: there are two possibilities: the triples of a solution either belong to the graph G or are generated by the closure process. If all triples belong to G then the closure path is empty. If not there is a closure path that generates the triples that do not belong to G.

Solution Lemma II: be C the set of all closure paths that generate solutions. Then there exist matching resolution paths that generate the same solutions.

Proof: Be (g1,r1,c1),… , (gx,rx,cx),… ,(gn, rn,cn) a closure path that generates a solution.

Let ((cn,rn,gn), … (c2,r2,g2),(c1,r1,g1) be the corresponding resolution path.

rn applied to cn gives gn. Some of the triples of gn can match with G, others will be deduced by further inferencing (for instance one of them might be in cn-1). When cn was generated in the closure it was deduced from gn. The triples of gn can be part of G or they were derived with rules r1,…, rn-2. If they were derived then the resolution process will use those rules to inference them in the other direction. If a triple is part of G in the resolution process it will be directly matched with a corresponding triple from the graph G.

Solution Lemma III. The set of all valid solutions to a query q with respect to a graph G and a ruleset R is generated by the set of all valid resolution paths, however with elimination of duplicates.

Proof. A valid resolution path generates a solution. Because of the completeness lemma the set of all valid resolution paths must generate all solutions. But the duplication lemma states that there might be duplicates.

Solution Lemma IV. A complete resolution path generates a solution and a solution is only generated by a complete, valid and final resolution path.

Proof. (: be (cn, rn,gn),… , (cx,rx,gx),… , (c1,r1,g1) a complete resolution path. If there are still triples from the query that did not become grounded by 1) matching with a triple from G or 2) following a chain (cn, rn,gn),…, (c1,r1,g1) where all gn match with G, the path cannot be complete. Thus all triples of the query are matched and grounded after substitution, so a solution has been found.

(: be (cn, rn,gn),… , (cx,rx,gx),… , (c1,r1,g1) a resolution path that generates a solution. This means all triples of the query have 1) matched with a triple from G or 2) followed a chain (cn, rn,gn),…, (c1,r1,g1) where gn matches with a subgraph from G. But then the path is a final path and is thus complete (Final Path Lemma).

Completeness Lemma. The depth first search resolution process with exclusion of invalid resolution paths generates all possible solutions to a query q with respect to a graph G and a ruleset R.

Proof.Each solution found in the resolution process corresponds to a closure path. Be S the set of all those paths. Be S1 the set of the reverse paths which are resolution paths (Valid Path Lemma). The set of paths generated by the depth first search resolution process will generate all possible combinations of the goal with the facts and the rules of the database thereby generating all possible final paths.

It is understood that looping paths are stopped.

Monotonicity Lemma. Given a merge of a graph G1 with rule set R1 with a graph G2 with rule set R2; a query Q with solution set S obtained with graph G1 and rule set R1 and a solution set S’ obtained with graph G2 and rule set R2. Then S is contained in S’.

Proof. Be G1’ the closure of G1. The merged graph Gm has a rule set Rm that is the merge of rule sets R1 and R2. All possible closure paths that produced the closure G1’ will still exist after the merge. The closure graph G1’ will be a subgraph of the graph Gm. Then all solutions of solution set S are still subgraphs of Gm and thus solutions when querying against the merged graph Gm.

5.17.An extension of the theory to variable arities

5.17.1. Introduction

A RDF triple can be seen as a predicate with arity two. The theory above was exposed for a graph that is composed of nodes and arcs. Such a graph can be represented by triples. These are not necessarily RDF triples. The triples consist of two node labels and an arc label. This can be represented in predicate form where the arc label is the predicate and the nodes are its arguments.

This theory can easily be extended to predicates with other arities.

Such an extension does not give any more semantic value. It does permit however to define a much more expressive syntax.

5.17.2.Definitions

A multiple of arity n is a predicate p also called arc and (n-1) nodes also called points. The points are connected by an (multi-headed) arc. The points and arcs are labeled and no two labels are the same.

A graph is a set of multiples.

Arcs and nodes are either variables or labels. (In internet terms labels could be URI’s or literals).

Two multiples unify when they have the same arity and their arcs and nodes unify.

A variable unifies with a variable or a label.

Two labels unify if they are the same.

A rule consists of antecedents and a consequent. Antecedents are multiples and a consequent is a multiple.

The application of a rule to a graph G consists in unifying the antecedents with multiples from the graph and, if successful, adding the consequent to the graph.

5.17.3. Elaboration

The lemmas of the theory explained above can be used if it is possible to reduce all multiples to triples and then proof that the solutions stay the same.

Reduction of multiples to triples:
Unary multiple: In a graph G a becomes (a,a, a) .In a query a becomes (a,a,a). These two clearly match.

Binary multiple: (p,a) becomes (a,p,a). The query (?p,?a) corresponds with (?a, ?p, ?a).

Ternary multiple: this is a triple.

Quaternary multiple: (p, a, b, c) becomes:

{(x, p, a), (x, p, b), (x,p,c)} where x is a unique temporary label.

The query (?p,?a,?b,?c) becomes:

{(y,?p,?a),(y,?p,?b),(y,?p,?c)}.

It is quit obvious that this transformation does not change the solutions.

Other arities are reduced in the same way as the quaternary multiple.

5.18.An extension of the theory to typed nodes and arcs

5.18.1. Introduction

As argued also elsewhere (chapter 8) attributing types to the different syntactic entities i.e. nodes and arcs could greatly facilitate the resolution process. Matchings of variables with nodes or arcs that lead to failure because the type is not the same can thus be impeded.

5.18.2. Definitions

A sentence is a sequence of syntactic entities. A syntactic entity has a type and a label. Example: verb/walk.

Examples of syntactic entities: verb, noun, article, etc… A syntactic entity can also be a variable. It is then preceded by an interrogation mark.

A language is a set of sentences.

Two sentences unify if their entities unify.

A rule consists of
antecedents that are sentences and a consequent that is a sentence.

5.18.3. Elaboration

An example: {(noun/?noun, verb/walks)} ({(article/?article,noun/ ?noun, verb/walks)}

In fact what is done here is to create multiples where each label is tagged with a type. Unification can only happen when the types of a node or arc are equal besides the label being equal.

Of course sentences are multiples and can be transformed to triples.

Thus all the lemmas from above apply to these structures if solutions can be defined to be subgraphs of a closure graph. .

This can be used to make transformations e.g.

(?ty/label,object/?ty1) ((par/’(‘, object/?ty1).

Parsing can be done:

(?/charIn ?/= ?/‘(‘) ((?/charOut ?/= par/’(‘)

� EMBED Word.Picture.8 ���

PAGE
21

[image: image14.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

_1107425040.doc
[image: image1.png]taller taller taller
Fred John Frank Guido
taller
taller taller taller
Fred John Frank Guido
taller

taller

