Radiation Exposure Monitoring

HE

Kevin O'Donnell Co-chair, IHE Radiology Planning Cmte Co-chair, DICOM Standards Cmte

Notivetion

X-Ray based imaging can provide tremendously useful information

Patient Dose is an important consideration

Potential benefit > potential risk ... but risk should be managed responsibly

Image Gently - 2010.02

IHE Changing the Way Healthcare CONNECTS

Why Collect Numbers

"I think patient dose is improving."

"I think it's getting worse."

 Managing in the presence of data is far better and easier than managing in its absence. – Robert Glass

Image Gently - 2010.02

IHE Changing the Way Healthcare CONNECTS

Why Collect Numbers

Technology is constantly changing

Technique is constantly evolving

• Understanding continues to improve

Why Collect Numbers

- ALARA Guidelines for Physicians
 (Patient Dose) <u>As Low As Reasonably Achievable</u>
 - Patient Dose < = Reasonably Achievable Dose</p>

$$A < = B$$

Should be routine / automatic / easy
Can we make the data readily available...

Image Gently – 2010.02

IHE Changing the Way Healthcare CONNECTS

... A New IHE Profile

What's an IHE Profile?

IHE in One Slide

IHE helps vendors implement & test functions that span multiple systems

• Profiles are implementation guides

- how to use existing standards
- to address a specific problem scenario
- Connectathons are test events
 - managed testing of Profile implementations
- IHE helps users purchase & integrate multi-system solutions
 - Ist required IHE Profile support in RFPs

Image Gently – 2010.02

IHE Connectathon

One Week; 70+ vendors; 350+ engineers; Thousands of tests; Managed process; Find & resolve issues.

Results @ www.ihe.net

Image Gently – 2010.02

IHE Changing the Way Healthcare CONNECTS

A New IHE Profile

IHE Radiation Exposure Monitoring Profile

- Integration of systems reporting dose and systems which receive, store, or process those reports
- Modalities, PACS, RIS, Workstations, Registries
- Facilitate compliance with Euratom 97/43, ACR Guidelines, etc.
- Directly based on DICOM Dose Reports
 Creation, Collection, Distribution, Processing

IHE Radiation Exposure Monitoring Profile

DICOM Dose Reports

- "SR Objects" DICOM Structured Reports
 Easily ingested (and regurgitated) by PACS
- Granularity : "Irradiation Event"
 + Accumulated Dose over Study, Series
- Templates:

CT, Projection X-Ray (Mammo, Fluoro)
(DR/CR?)

Not addressed: NM, RT

What To Measure

So many choices...

Exposure, Dose, Dose Index, Estimated Dose, Effective Dose, Estimated Effective Dose, ...

► CTDI_w, CTDI_{vol}, CTDI₁₀₀, CTDI_{freeair}, ...

Solution:

Collaborated with IEC Subcommittee 62B
 Established a baseline & a pipeline
 Upgrade when necessary

Key Measurements

• CT Dose

- DLP, CTDIvol, kVP, mA, sec
- Effective Dose [Optional] (Reference estimation method)

Projection X-Ray Dose DAP, Dose@RP, kVP, mA, sec Fluoro Dose, Fluoro Time

Mammography Dose

- > AGD, Entrance Exposure@RP, kVP, mA, sec
- Compression, Half Value Layer

ftp://medical.nema.org/medical/dicom/2008/08_16pu.pdf ftp://medical.nema.org/medical/dicom/final/cp874_ft.pdf

Image Gently - 2010.02

IHE Changing the Way Healthcare CONNECTS

Other Details in Dose SR

- Full Patient / Order / Study Details
- Unique ID for each Irradiation Event
- Equipment ID, Ordering Doc, Performing Tech
- Patient Position, Anatomy imaged
- Imaging Geometry (projection)
- Collimation
- X-Ray Filters, Anode Target Material
- Calibration, Phantom, Dosimeter

DICOM SR Template

TID 10013 CT IRRADIATION EVENT DATA Type: Extensible

	NL	Rel with Parent	VT	Concept Name	VM	Req Type	Condition	Value Set Constraint
1			CONTAINER	EV (113819, DCM, "CT Acquisition")	1	М		
2	>	CONTAINS	TEXT	EV (125203, DCM, "Acquisition Protocol")	1	U		
3	>	CONTAINS	CODE	EV (123014 , DCM, "Target Region")	1	м		DCID (4030) CT and MR Anatomy Imaged
4	>	CONTAINS	CODE	EV (113820, DCM, "CT Acquisition Type")	1	М		DCID (10013) CT Acquisitio Types
5	>	CONTAINS	CODE	EV (G-C232G-C32C, SRT, "Procedure Context")	1	U		DCID (10014) Contrast Imaging Technique
6	>	CONTAINS	UIDREF	EV (113769, DCM, "Irradiation Event UID")	1	М		
7	>	CONTAINS	NUM	EV (113821, DCM, "X- ray Filter <u>Aluminium</u> Equivalent")	1	U		Units = EV (mm, UCUM, "mm")
8	>	CONTAINS	CONTAINER	EV (113822, DCM, "CT Acquisition Parameters")	1	М		
9	>>	CONTAINS	NUM	EV (113824, DCM, "Exposure Time")	1	М		Units = EV (s, UCUM, "s")
10	>>	CONTAINS	NUM	EV (113825, DCM, "Scanning Length")	1	М		Units = EV (mm, UCUM, "mm")
11	>>	CONTAINS	NUM	EV (113826, DCM,	1	М		Units = EV (mm. UCUM.

Creating SR Dose Reports

Modalities

> CT, XA/XRF, X-Ray, Mammography

• "Readers"

CR, DX, Film Digitizers
Note challenge if tube and detector don't talk...

3rd Party Workstations

RIS, PACS

Storing SR Dose Reports

Usually stored in the Study folder
 Archive, Backup, Reconciliation
 Query / Retrieve

Can be sent to other destinations

Using SR Dose Reports

Possible applications:

Radiation QA

- Periodically Query / Retrieve Reports from Archive
- Set policies/standards and flag deviations
- Set goals for improvement and track;
- Implement protocol changes and compare difference in dose

Patient Impact Evaluation

e.g. if Patient identified as pregnant post-facto

Dose Mapping

Store data in realtime from Modality to Mapping Workstation

Using SR Dose Reports

National Registries

- Anonymize and submit Dose Reports to Register
- Compile Population Risk Estimations
- Derive Dose Reference Levels
- Provide Site-Site Comparisons

Individual Dose Record

Collect Dose Reports over time

Clinical Trials

- Collect Dose together with Images
- Demonstrate both improved detection & reduced dose

Image Gently – 2010.02

2009 Connectathon Participation

Vendors already testing IHE REM Profile:

- Agfa
- GE
- Krucom
- Siemens

• EDL

- Infimed
- MedicalCommunications
- Softway Medical

Results posted at: http://ihe.univ-rennes1.fr/con_result/

Take-Away

IHE REM Profile:

- Automates data collection
- Useful component of a site Radiation Safety Program
- Ask about it when purchasing/upgrading
 - Check products IHE Integration Statement
- Discuss your reporting/analysis preferences with your Dose Info Reporting vendor
- Consider legacy system strategies

Questions?

IHE REM Profile

www.ihe.net

www.ihe.net/Technical_Framework/index.cfm#radiology

Check out other IHE Profiles

wiki.ihe.net -> Click on "Integration Profiles"

Why not use Image Headers?

Mostly Exposure details (for interpretation)

No image; no dose
 > deleted due to quality / patient motion

More images; more dose
 > extra reconstructions; post-processing

Lacks complete dose details

Why not use MPPS?

Modality Performed Procedure Steps
 Status messages back to RIS / PACS

Transient Information
 > designed for workflow; not persistent archiving

Lacks complete dose details

REM Profile: Actors & Transactions

25

The IHE Process

